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The Price of Synchrony: Evaluating the Resistive
Losses in Synchronizing Power Networks

Emma Tegling, Bassam Bamieh, Fellow, IEEE, and Dennice F. Gayme, Senior Member, IEEE

Abstract—This paper investigates the resistive power losses that
are incurred in keeping a network of synchronous generators in a
synchronous state. These losses arise due to the transient power-
flow fluctuations that occur when the system is perturbed from
a synchronous state by a small transient event or in the face of
persistent stochastic disturbances. We call these losses the “price
of synchrony,” as they reflect the real power-flow costs incurred
in resynchronizing the system. In the case of small fluctuations at
each generator node, we show how the total network’s resistive
losses can be quantified using an > norm of a linear system
of coupled swing equations subject to distributed disturbances.
This norm is shown to be a function of transmission-line and
generator properties, to scale unboundedly with network size, and
to be weakly dependent on the network topology. This conclusion
differentiates the price of synchrony from typical power systems
stability notions, which show highly connected networks to be
more coherent and, thus, easier to synchronize. In particular, the
price of synchrony is more dependent on a network’s size than its
topology. We discuss possible implications of these results in terms
of the design of future power grids, which are expected to have
highly distributed generation resources leading to larger networks
with the potential for greater transient losses.

Index Terms—Distributed control, large-scale networks, oscil-
lator networks, power networks, power system dynamics system
performance.

I. INTRODUCTION

HE electric power system is undergoing rapid changes.

The power grid of the future is expected to have higher
levels of uncertainty from renewable energy sources [1], chang-
ing load patterns [2], and increasingly distributed electricity
generation [3]. Many of these changes can affect the stability
of the power network. The inherent variability of solar and
wind energy, for example, is likely to produce more frequent
and higher amplitude disturbances. Such disturbances, along
with greater distribution of both conventional and renewable
generation resources, have the potential to affect rotor-angle
stability, which is the ability of the power grid to recover syn-
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chrony after a disturbance [4]. Synchrony, in this context, refers
to the alignment of the frequency and phase of all generators
within a particular power network. In other words, it is when
all of the frequencies are equal [5] and the phase differences are
at an equilibrium state corresponding to balanced power flows
throughout the network. Maintaining synchrony in a network
thus depends on its ability to sustain or restore this condition
when it is subjected to disturbances from this nominal operating
point.

Synchronous stability properties of power systems are typi-
cally studied using a so-called network reduced model where
power loads are modeled as equivalent impedances that are
absorbed into the “transmission lines” of the reduced network,
see, for example, [5]-[9] and the references therein. The result-
ing system is a set of coupled swing equations that describe the
dynamics of a network of generators connected by these lines.
This system is then analyzed to determine conditions under
which the synchronized state is stable, see, for example, [5] and
[10]. These analyses are related to the well-studied transient
stability problem, see, for example, [11], which refers to the
ability of a system to return to a stable operating condition after
a large angle disturbance.

A recent research trend has been to analyze synchronous
stability properties of power systems using tools from systems
and control theory. The associated literature is vast and here
we highlight only a subset of this research. For example, a
series of works draws connections between power grids and
coupled Kuramoto oscillators [10], [12]-[14]. The nonuniform
Kuramoto oscillator modeling framework provides a first-order
approximation of the network reduced model. Dorfler and Bullo
[13], [14] exploit the properties of this well-studied system to
provide network parameter-dependent analytical conditions for
frequency and phase synchronization in power networks. In a
related work [15], these authors also make connections between
network reduced models and the structure preserving network
model of Bergen and Hill [16]. Similar first-order models have
been used to investigate the effects of power-flow scheduling
and increasing power network interconnectivity (i.e., adding
transmission lines) on the rate of convergence [17].

The control design for synchronizing networks of LC-
oscillators has also been investigated in [18] and [19], where
synchronization is defined in terms of voltage differences be-
tween connected nodes rather than phase differences. These
authors employ an Hs system norm as a performance metric
for control design. As will be described later, the current work
also uses an Ho norm-based performance metric. However, the
system dynamics and the output are defined differently and,
therefore, these are two distinct performance metrics.
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In this paper, we formulate a new problem and study syn-
chrony in power networks in the context of network perfor-
mance rather than stability. For this purpose, we assume that the
network is synchronously stable, that is, the system is at a stable
operating condition and will return to this synchronized state af-
ter being subjected to small disturbances. We then focus on the
control effort required to maintain or return to synchrony. We
define this control effort as follows. Lack of synchrony leads
to nonequilibrium circulating currents [20] passing between
generators whose angles no longer correspond to the values as-
sociated with their nominal phase differences. These nonequi-
librium current fluctuations act as a signaling mechanism that
indicates that the system needs to be resynchronized and results
in transient resistive losses over the power lines. These losses
are essentially the cost of using power-flow fluctuations (as
opposed to, for example, a communications infrastructure) as
the signaling mechanism to achieve synchronization between
generators. It is in this sense that we refer to these losses as
a control effort and as the “price of synchrony.” We point
out that other signaling mechanisms [21] based on information
transmission can be used for synchronization, and these would
not incur the transient power losses we investigate. However, in
this paper, we do not consider such systems, and focus instead
on how the current scheme of using fluctuating power flows as
the synchronization signal could scale to larger networks.

This work investigates the transient power losses described
above using a reduced network system of synchronous gener-
ators subject to disturbances. We show that the total transient
power losses due to nonzero line resistances can be quantified
through the H5 norm of an input—output system of coupled
swing equations with an appropriately defined output. This H,
norm can be interpreted as the average (per time) transient
power losses that arise due to either small persistent stochastic
disturbances, or as the total (over all time) transient power
losses due to a small transient event. We determine expressions
for this norm using so-called grounded Laplacians [22], [23]
where the neutrally stable network-mean mode is removed.
This mode is unobservable based on the system output associ-
ated with the performance objective defined herein. Physically,
this reduction corresponds to grounding one of the generator
nodes and modeling this node as an infinite bus with fixed
states.

Our main result proves that the total transient resistive power
losses in a network of identical generators depend on a general-
ized ratio between weighted graph Laplacians defined based on
the line resistances and reactances for the reduced network. We
provide bounds on this generalized ratio, which show that the
transient losses grow unboundedly with the number of network
nodes. In the special case of a network with all edges having
identical resistance to reactance ratios, the losses scale directly
with the number of nodes and are entirely independent of the
network topology. In other words, for this special case, highly
connected and loosely connected networks with the same num-
ber of nodes incur the same resistive power losses in recovering
synchrony. In more general network settings, the losses are af-
fected by network topology, but this dependence remains weak
and the price of synchrony depends more on the size of the net-
work than its connectivity. Therefore, even though the transient
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Fig. 1. Example of a network of N = 7 generator nodes.

power losses that arise during synchronization are typically a
small percentage of the total real power flow, our results (based
on a simplified network model) indicate that these losses may
become significant as power networks evolve toward increas-
ingly distributed systems. Furthermore, merely adding links to
the network to increase connectivity is unlikely to alleviate the
increases in transient power losses as the network grows.

In order to put the results for the previously described special
cases in a larger context, we also provide some generalizations
of the theory for systems of heterogeneous generators. In
particular, we examine the problem of adding a generator to
an existing network. These results indicate that the marginal
losses incurred by adding a well-damped, low-inertia generator
to the system are small compared to those arising through the
addition of a poorly damped, high-inertia one. This generator
parameter dependence is particularly relevant in the face of
increasingly distributed generation in low-voltage (LV) grids,
which typically have higher line resistances (i.e., greater real
power losses). Numerical examples also demonstrate that care-
ful selection and placement of different generators can be
used to reduce or increase transient losses. These effects are,
however, weaker than the effect of network size and, in practice,
strategic configuration of generators is unlikely to mitigate
increases in the transient losses due to larger networks.

The remainder of this paper is organized as follows.
Section II introduces the problem formulation and describes
connections between the current work and distributed control
theory. Section III derives algebraic expressions for the resistive
losses and provides the main results. A discussion of general-
izations and bounds on the 2 norm is provided in Section IV.
Section V contains some numerical examples to illustrate the
theory. Finally, we summarize the main findings and discuss
directions for future work in Section VI.

II. PROBLEM FORMULATION

Consider a network of N nodes (buses) and a set of edges
(network lines) &, as depicted in Fig. 1 for a system where
N = 7. Throughout this section, we assume a Kron-reduced
network model (see, for example, [9], [11], and [24]) where
loads are modeled as impedances that are absorbed into the
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network lines. Thus, atevery node ¢ = 1, ..., NV, there is a gen-
erator with inertia constant M;, damping coefficient [3;, voltage
magnitude |V;|, and voltage phase angle 6;. In the absence
of external control, the dynamics of the i*" generator can be
described using the following classical machine model [6]:

Mif; + Bif; = Py — Pey Vi=12,....N ()
where P,, ; is the mechanical power input from the turbine.
P, is the electrical power flow out of the i*"' generator (i.e.,
the real power injected into the grid), which is given by

P.;=gilVi]* + Zgij|Vi| |V;| cos(6; — 6;)

i~

+> iVl [Vilsin(0; — 0;). ()

i

Here, j ~ i indicates the existence of a line (edge &;;) connect-
ing nodes 7 and j in the Kron-reduced network model. g;; and
b;; are, respectively, the conductance and susceptance associ-
ated with edge &;; and g; is the shunt conductance of node i.

In order to simplify the notation, we define the bus admit-
tance matrix Y € C™*" of the reduced network as

Gi + > (gik — jbir), ifi=j
k~1

—(gi5 — jbij)s ifi#jand j ~ 1
0 otherwise.

Yij =

Y can be partitioned into a real and an imaginary part such that
Y =(Le+g)—iLs 3)

where L denotes the conductance matrix, L g denotes the sus-
ceptance matrix, and g := diag{g;} is the associated diagonal
matrix of shunt conductances. The matrices Lg and Lg are
Laplacians of the weighted network graphs respectively defined
by the susceptances b;; and conductances g;; of the lines in the
Kron-reduced network.

We now further approximate the power system model (1) and
(2) by linearizing the system around a stable operating point
[0*,w*]", which WLOG we can transfer to the origin through a
change of variables. This linearization allows us to investigate
the effects of small disturbances or persistent small amplitude
noise within a small neighborhood of the operating point. It is
therefore well suited to analyze the effects of small phase angle
and frequency changes associated with the system returning to a
synchronous state (stable operating point) after a small transient
event or in the face of small persistent disturbances.

The standard linear power-flow assumptions include constant
voltages |V;| = 1 for every bus 4, and retaining only the linear
terms in (2), which leads to

Pe,i ~ Z bij [01 — Gj] (4)
FEN
See, for example, [25] for a detailed analysis of the applicability
of such assumptions. Substituting (4) into (1) leads to

M;f; + /8201 - Z bij[0;i — 0;] + P )
JjEN

which we can rewrite in state space form as follows:

d o 0 I 01 [ 0
dt[w]:[—/\/llLB —MIB] [J*[Ml}w ©)

where M = diag{M;}, B = diag{,}, and we have assumed
that P, ; is a constant that can be lumped into the input w.

A. System Performance

As mentioned in the introduction, our concern is not to char-
acterize the stability of the system (6) but rather to evaluate the
transient power flows that occur as the system resynchronizes
after a small disturbance from a nominal operating condition
or in the face of persistent small-amplitude disturbances. We
therefore assume that the system matrices are such that the
dynamics are stable around the equilibrium manifold for which
all phases are equal. We now define the system output (mea-
surement) needed to evaluate the real power losses arising from
the fluctuating phase-angle differences associated with small
excursions from the stable operating point.

The real power loss over an edge &;; is P;; = g:;|V; — V]|2
If we enforce the linear power-flow assumptions and retain only
the terms that are quadratic in the state variables, then standard
trigonometric identities can be used to obtain the approximation
P ~ gj(0; — 0j)2 for this flow. Since we are regarding 6; as
the deviation from the i*" generator’s nominal operating point,
this power flow is equivalent to the resistive power loss over the
edge as the system resynchronizes. The corresponding sum of
instantaneous, transient resistive power losses over all links in
the network can then be approximated as

Ploss = »_ 050 — 6;)%. )

i~g

We can now make use of the conductance matrix Lg to
rewrite (7) as the quadratic form Pyss = 68" L0. Since Lg is
a weighted graph Laplacian, which is positive semidefinite, we
can define a system output

0
v=lcv 0] [7] ®
where ' := LlG/ % is the unique positive semidefinite square
root of L. It is then easy to see that Pioss = 4" y.

For ease of reference, we rewrite the state dynamics (6) and
the output equation (8) together as the MIMO LTI system

d o 0 170 0
a H = [—M‘lLB —M‘lB] [w] + [M‘l] v 0

1 0
Z/:[Lé O} wl (9b)
This LTI system is a Linear Quadratic approximation of the
full nonlinear problem in the sense that the dynamics have been
linearized around an equilibrium corresponding to the condition
where the system power flow is balanced and all generators are
operating at a nominal frequency. The instantaneous resistive
power losses are quadratically approximated by the (square of
the) Euclidean norm of the output signal y. We next describe
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several interpretations of the 5 norm of the system (9) in terms
of the total transient resistive losses (price of synchrony).

Remark 1: The system (9a) represents a linearization of
the swing dynamics (6) which assumes that line resistances
are negligible, while the output (9b) measures the effect of
nonzero resistances given the system trajectories arising from
the dynamics of (9a).

B. Hs Norm Interpretations for Swing Dynamics

The LTI system (9) is formulated so that the square of the
Euclidean norm of the output y(¢)*y(¢) is the instantaneous
resistive power loss at time ¢. The Hs norm of this system
can be interpreted as the average (per time ) power loss in
a setting with persistent disturbances, or alternatively as the
total (over all time) power loss due to a transient event. These
interpretations of the Ho norm are standard, but we recap them
here in the context of the particular physical scenarios for the
power network setting considered in this paper.

Denote by H the LTI system (9), and consider the following
three scenarios.

1) Response to a white stochastic input. When the input w

is a white second-order process with unit covariance (i.e.,
E{w(r)w*(t)} = 0(t — 7)I), the (squared) Ho norm of
the system is the steady-state total variance of all output
components, that is

1%, = lim E {y (y(0)}.

For the swing dynamics (9), the disturbance vector can
be thought of as persistent stochastic forcing at each
generator. These disturbances, which are uncorrelated
across generators, can be due to uncertainties in local
generator conditions, such as changes in local load or
supplied mechanical power. The variance of the output
is exactly the expectation of the total (over the entire
network) instantaneous power loss due to line resistances.

2) Response to a random initial condition. With zero input
and an initial condition that is a random variable z, with
correlation E{x,x%} = BB*, the Hy norm is the time
integral

11, = | CE () d

of the resulting response y.
The interpretation for (9) is as follows. Since BB* =

[8 /\/(l) 9 } , which is diagonal, the initial condition cor-

responds to each generator having a random initial ve-
locity perturbation that is uncorrelated across generators
and zero initial phase perturbation. In this case, ||H||7,
quantifies the total (over all time and the entire network)
expected resistive power losses due to the system return-
ing to a synchronized state.

3) Sum of responses to impulses at all inputs. Let e; refer to
the vector with a 1 in the i*" component and zero every-
where else. Consider NV experiments where in each, the
system is fed an impulse at the i*" input channel, that is,

w;(t) = €;6(t). Denote the corresponding output by ;.
The (squared) Ho norm is then the sum of the Lo norms
of these outputs, that is

N o0
12, =3 / yE (Ot dt.
=1

A stochastic version of this scenario corresponds to a sys-
tem where the inputs w; can occur with equal probability.
Under this assumption, ||H||7,, becomes the expected
total power loss given these inputs.

The corresponding interpretation for (9) is when each
generator is subject to impulse force disturbances (since
w enters the momentum equation of each generator), then
|H||3,, is the total power loss that is incurred during
resynchronization.

C. Relations to Network Coherence

The LTI model (9a) is very similar to the model of vehicular
dynamics studied in [26]. The notion of network coherence
studied there can be translated in the present context of power
networks as quantifying how tightly the phases of all generators
drift together. More precisely the following quantity:

1 N 2
E (ai N2 9j)

expresses the variance of the deviation of the i*" node from the
average over all nodes in the network. This quantity is never
zero when there are stochastic disturbance inputs, even in a
stable power network. Larger relative phase deviation variances
reflect a more disordered network while smaller variances
imply a more coherent network.

The asymptotic behavior of the disorder measure (10) as
the network size N increases was studied in [26] for regular
network structures such as multidimensional tori and their
variations. The basic trend is the intuitive one that more con-
nected networks tend to be more coherent and vice-versa. In
that analysis, however, the control cost was considered as per
vehicle, while in the present context, it is the total or aggregate
transient resistive power loss over the entire network that is
of concern. Thus, although the two settings have analogous
dynamics, the performance objectives differ. We point out that
the disorder measure (10) is not the Euclidean norm of the
output y defined in (9b). In other words, the amount of phase
disorder in a network as measured by (10) is not necessarily
related to resistive power losses and, in particular, may not scale
similarly with network size N. While networks with high phase
coherence may be desirable for other reasons (such as stability
of the nonlinear model), the results to be presented shortly
indicate that the price of synchrony (total transient resistive
power losses) can be large even in highly coherent networks.

(10)

III. EVALUATING RESISTIVE LOSSES

In this section, we derive a formula for the 5 norm of the
system (9) in terms of the system matrices and parameters. We
then consider the implications for some important special cases.
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Throughout this section, we assume identical generators, that is,
M = MI and B = 1.

A. System Reduction

As previously discussed, L and Ly are graph Laplacians.
They therefore share the eigenvector v = 1, with all compo-
nents equal to 1, and the associated zero eigenvalue, that is

Lpl=Ls1l=0.

The zero eigenvalue implies that these matrices are singular and
that the system (9) is not asymptotically stable. However, as
shown in the Appendix, this mode is not observable from the
performance output y. If the network is connected, the remain-
ing eigenvalues are stable and therefore the system has a finite
‘Ho norm. In order to properly define the Ho norm of (9), we
perform a system reduction procedure that effectively removes
the unobservable mode at O and enables us to investigate a
reduced system that is asymptotically stable.

Following the approach in [23], we derive the reduced system
by first defining a reference state k € {1,..., N}. We denote
the reduced or grounded Laplacians that arise from deleting the
k'™ rows and columns of L and L B, respectively, as EG and
L. The states of the reduced system 6 and @ are then obtained
by discarding the k'" elements of each state vector. This leads
to a system that is equivalent to one in which 6 = w; =0
for some node k € {1,2,..., N}. The physical interpretation
of the reduced system is that the £ node is connected to
ground. We call the resulting reduced, or grounded, system H
and rewrite it as

d[é 0 I 0 0 7.
o) =g b 2]+ [f]s am
=: Ad + Bw; _
g=|1¢ o] M = Co (11b)

where ¢ = [é @]T. Assuming a network where the underly-
ing graph is connected, the grounded Laplacians L and L are
positive definite Hermitian matrices (see, for example, [22]).
All of the eigenvalues of system H are thus strictly in the left
half of the complex plane and the input—output transfer function
from w to y has a finite Ho norm.

B. Ho Norm Calculation
The squared Hy norm of the system H is given by
117, = te(B"XB)

where X is the observability Gramian that can be obtained from
the Lyapunov equation A*X + XA = —C*C'. Expanding this
equation for the system H in (11) leads to

PR I AR | I
I =21 | [ X X, Xy Xof |-l —1
__|Le O
0 O

from which we extract the following two equations:

B e ok e ﬁ
X()—MXQ-FXO—XQM:O

1 -~ = ~ 1 - -
— —IpX:—Xo—Lp=—Lc¢.
MBS0 OB ¢

(12a)

(12b)

Then, using (12a), it is straightforward to compute %tr()zg) =
tr(Re{Xo}). Equation (12b) can be rearranged to yield

LpXLg + Xo= MLgLy

where we make use of the fact that L is nonsingular. Combin-
ing these expressions and using standard matrix trace relation-
ships leads to the following expression:

- M? O
tr(Xz) = 5t (LBlLG) .
Finally, noting that tr(B*XB) = (1/M?)tr(X5), we derive
the following Lemma.
Lemma 3.1: The squared H2 norm of the input—output map-
ping of the system (11) is given by

(13)

115, = 55 (26 Le) (14)
where L and L¢; are the grounded Laplacians obtained using
the previously described procedure and /3 is each generator’s
self damping.

The choice of grounded node k has no influence on the
Ho norm given in (14). We illustrate this point through the
following lemmas, which are used to derive the main result
stated in Theorem 3.4.

Lemma 3.2: Let H denote the input—output mapping (9)
with M = MI and B = 8I and H denote the corresponding
reduced system (11). Then, the norm || H||7,, exists and

1117, = IH |3, -

Proof: See the Appendix. |
Lemma 3.3: Let I~/G and L p be the reduced, or grounded,
Laplacians obtained by deleting the k" row and column of L
and L p respectively. Then
tr(Ly'Le) = tr (Lh L) (15)
where T denotes the Moore—Penrose pseudoinverse.
Proof: See the Appendix. |

The result can now be stated in the following theorem, which
was also independently derived in [27].

Theorem 3.4: Given a system of N generators with equal
damping and inertia coefficients 3; = 8 and M; = M, Vi €
{1,..., N} whose input—output response is given by (9). The
squared 9 norm of the system is given by

1 ;
[HIR, = e (L)

% (16)

Thus, the total transient losses of the system are a function of
what we call the generalized Laplacian ratio of Lg to L.
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Proof: The result follows directly from Lemmas 3.1-3.3.

|

In (9), we assumed that the mechanical input P, ; to each

generator ¢ is lumped into the input w. If instead, one chooses

to scale the input by the generator’s inertia, that is, define w' :=

(1/M)w and B’ := [0 I]T, then the squared Hz norm of the

resulting system can be constructed in an analogous manner, as
shown in the following Corollary.

Corollary 3.5: Consider the modified input—output mapping

jt{z}:[_];LB _iﬂjl} [z]+[?]w’ (17)
y=14 o [fj]

The H2 norm (squared) of this system is

2
||I'I/||§l2 — %tr (LELg) .

Proof: Following the proof of Lemma 3.1, we first note
that for this modified system tr(B™* X B') = tr(X5). The result
then follows directly from Lemmas 3.2 and 3.3. |

Theorem 3.4 states that the price of synchrony (transient
resistive losses) is proportional to what can be thought of
as a generalized ratio between the conductance and suscep-
tance matrices. The ratio of line conductances to susceptances
or, equivalently, resistances to reactances is generally small
for transmission systems and is therefore often neglected in
power flow calculations [25] and stability analyses. However,
the matrix trace operation in (16) implies that the transient resis-
tive losses increase with network size (number of generators).
Therefore, transient resistive losses may become significant in
large networks with highly distributed generation even when
line resistances are small. In LV distributed generation networks
where the resistance to reactance ratios are higher than in
transmission systems,' this trend would be doubly problematic,
as both the network size and this ratio are larger. The next
section explores the effect of network size directly for the
important special case of equal line ratios.

C. Special Case: Equal Line Ratios

We now consider the special case when the generalized
Laplacian ratio in (16) is a scalar matrix o/, where

bij ZCij

T4
a A

In other words, all lines in the system &; € £ V i ~ j have
equal resistance to reactance ratios. This assumption implies
L = aLp. Thus, by Lemmas 3.1 and 3.2
1 = ~ o
2 _ ~1 _

IHI, = 5500 (Li'als) = 55V
which is the result presented in [29]. This result is remarkable
in that it says that for this special case, the size of the transient

(18)

I'Typically, this ratio is 1/16 in 400 kV lines but 2/3 in 11 kV systems [28].
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losses depends only on the network’s size and is entirely
independent of its topology.

Remark 2: If we instead define a weighted mean @ of the
line ratios «;; = (g;;/bi;) for all &;; in the system, the result
in (18) can be generalized to a system with heterogeneous line
ratios [27].

Remark 3: A choice of ayax > (gi;/bi;) for all edges &;; €
& can be used to define a conservative bound from (18) [27].
One can similarly define a lower bound amin < (gs5/bij) to
bound the Hy norm of the system as

Omin Q'max
(N 1) < [H[E, < v 1) 9)

26 2
where ipin(max) are the smallest (largest) of the line ratios [27].
These bounds also increase unboundedly with the number of
generators and are independent of the network topology.

It is worth noting that the topology independence in (18) and
the bounds discussed in Remark 3 are in contrast to measures
of power system stability and performance metrics, such as net-
work coherence and damping. For example, the topology of the
system plays an important role in determining whether a system
of this kind can synchronize [12], [13], [26], [30]. The network
connectivity of a power system is also directly related to its
rate of convergence and damping properties [17]. One intuitive
explanation for the price of synchrony being independent of
network topology for the equal line ratio case is as follows. We
expect a highly connected network to have much more phase
coherence than a loosely connected network with the same
number of nodes. Consequently, the power flows per link in
a highly connected network are relatively small, but there are
many more links than in the loosely connected network. Thus,
in the aggregate, the total transient power losses are the same
for both networks. A more coherent network is, however, more
stable.

The equal line ratio assumption is not unreasonable for power
systems, as the ratio of resistances to reactances of typical
transmission links tend to lie within a small interval. A recent
study [5] found that the node degrees of Kron-reduced networks
tend to be much more uniform than those of the full power
networks that they are derived from. Those results suggest that
the “lines” of such reduced systems are also more uniform
than those found in actual power networks and, therefore, the
equal line ratio assumption is suitable for the reduced network
considered here.

IV. GENERALIZATIONS AND BOUNDS

In this section, we provide bounds on the expression (16) and
discuss their implications. We also address the more general
case of systems with nonidentical generators.

A. Loss Bounds

As previously mentioned, the term tr(L;LG) in Theorem 3.4
can be interpreted as a generalized ratio between the network’s
conductance matrix Lg and its susceptance matrix Lp, that is,
the real and imaginary part of the bus admittance matrix without
the shunt conductances (Y —g). We denote the respective
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eigenvalues of Lg as A, > ... > A§ > Oand of L as A\Y >
... > AP > 0. The generalized ratio of these two Laplacians
can then be lower bounded in terms of these eigenvalues as

N
A
=2

(See, for example, [31] for a proof.) In the case of identical line
ratios, equality holds, and each eigenvalue ratio is equal to a.
The unbounded growth of the transient resistive losses with the
network size N, which was noted in the special case of (18),
is also evident in the bound in (20). In particular, the scaling
with network size is evident because the number of eigenvalues
and, thus, the sum of their ratios, grows with each added node.
We illustrate this growth and the tightness of the bound in (20)
through the examples in Section V-B.

The inequality (20) also provides some insight into why
the Ho norm does not have a strong dependence on network
connectivity even for networks of nonidentical line ratios.
Although the eigenvalues of the Laplacian are difficult to
characterize precisely for general graphs, it is well known that
they relate strongly to the node degrees (see, for example, [32]
and [33]). In (20), however, we consider the ratio between
the eigenvalues of Lg and Lp. Since these are two graph
Laplacians describing the same topology, their node degrees
gi; and b;; can be related through @;, the average ratio of line
conductances to susceptances of the lines incident to node <.
This &; is independent of how many such incident lines there
are. It is therefore reasonable to infer that each eigenvalue ratio
AF/AB is also more strongly related to @&; than the number of
lines connected to each node, which would be a measure of
the network connectivity. We will further explore this notion
through the examples in Section V.

As derived in Section III-C, the resistive losses can can also
be bounded as (19), which allows for a simple and convenient
analysis of the network. Both sides of this inequality increase
unboundedly with N, but the bound becomes loose if the sys-
tem is heterogenous in terms of the line resistance to reactance
ratios. This may be the case if a combined transmission and
distribution network is considered, or in cases of highly varying
impedance loads. In some cases, it is then better to bound the
losses in terms of graph-theoretical quantities. This can be done
in the following manner:

(20)

tl"(Lg)
Ay

AGtr (Lg) <tr (LjBLG) < @1

where \S and A\Z are the algebraic connectivities of the graphs
weighted by line conductances and susceptances, respectively.
See [31]for a proof. It holds that AS' < (N/(N — 1))gi; min and
AB < (N/(N — 1))bis, min, Where g;;, b;; are the respective self
conductances and susceptances of the nodes (i.e., the respective
node degrees). Furthermore, the quantity tr(L%) is proportional
to what we can interpret as the total effective reactance of
the network, in analogy with the concept of total effective
resistance, as recently discussed in, for example, [23] and [34].

By Rayleigh’s monotonicity law (see [35]), the total effective
reactance can decrease unboundedly by adding lines and in-

creasing line susceptances. However, the algebraic connectivity
Ao is very small for weakly connected networks and can also
be found to decrease with network size. Therefore, while the
bounds (21) with )\, in the denominator, are accurate for small
and well-connected networks, they become loose for the large,
sparsely connected (i.e. not Kron-reduced) networks that most
often characterize a power grid.

In a more general context, Theorem 3.4 applies to many
networks with second-order consensus dynamics, and the H;
norm can be interpreted as a type of energy measure [27].
Such dynamics may describe several types of mechanical or
biological systems [10], which may not have similar topolog-
ical properties to power systems. In these cases, the bound
in (21) may provide a more accurate approximation for the
Ho norm.

B. Systems of Nonidentical Generators

The results derived by considering a grid with identical
generators suggest that the losses scale with the network size. In
order to put these results in context, it is desirable to understand
the extent to which these scaling properties apply to systems of
nonuniform generators. In this section, we explore these ideas
and use the results from previous sections to gain insight. We
begin by examining the special case where one nonuniform
generator is added to the network.

From Theorem 3.4, we can deduce that

1 i 2 1 f
st (Ebke) < I, < 55— (LhLo)
where 6min = minie{l,...,N} Bi and 6max = MaX;e(1,...,N} Bi.
The losses are thus lower and upper bounded by the prop-
erties of the most strongly and lightly damped generators,
respectively. Some interesting questions that arise from this
observation are: 1) How does adding a generator to an existing
network affect the total resistive losses? and 2) What are the
important parameters in determining this incremental cost? The
next result addresses one such scenario.

Lemma 4.1: Consider a network of /N generators with tran-

sient resistive losses given by Hf{oﬂiz. If one connects an
additional generator with damping Sy 41 and inertia My to
any node k € {1,..., N} in the existing network by a single
link with a line ratio of o n4+1 = rg N+1/%k N+1, then the
new network’s losses are given by

~ 2 -2 1
H, = ||Hy + ——— Qg Nt1-
02, = 1ol + 57— e

If the dynamics are as per (17), the additive term is instead
(MR 11 /26N +1) 0k, N 41
Proof: See the Appendix. |
This result can be interpreted as follows. The additional
losses incurred through the connecting a “light” (low inertia)
or well-damped generator are smaller than those incurred due
to adding a “heavy” (high inertia) or poorly damped generator.
In the face of increasingly distributed generation, this result
implies that while the synchronization losses do scale with
the network size, the impact of low inertia or small-scale
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distributed generators is relatively low, compared to that of
large conventional generators. This concept is further explored
in the example of Section V-C.

While further analytical results for systems with nonidenti-
cal generators are not presented in this paper, the numerical
example in Section V-D provides further insight into the price
of synchrony in networks with nonuniform generation. That
example shows that although the scaling relationships and
topology independence results for the special cases discussed
herein hold for limited parameter variations, judicious sizing
and placement of new generators can, in fact, reduce system
losses.

Remark 4: While results in this paper are only valid for
Kron-reduced networks of synchronous generators modeled by
second-order swing equations, ongoing work [36] indicates that
the main results presented in this paper extend to more general
systems. That work employs an extended, structure-preserving
network model with load dynamics and asynchronous genera-
tors. The similarity in the results of that work imply that the
Kron-reduction of the network employed here does not account
for the network scaling properties or the weak topological
dependence of the transient losses observed herein.

V. NUMERICAL EXAMPLES

The results derived and discussed in the previous sections
indicate that the price of synchrony in a network of generators
with a particular structure is highly dependent on the number of
generators in the system. These transient resistive losses were
also shown to depend on the system’s resistance to reactance
ratios and the generator properties as well as to weakly depend
on the network topology. In this section, we provide some
numerical examples to illustrate these results and to explore
more general networks.

A. Line Ratio Variance

We first investigate the behavior of transient resistive losses
in systems with increasingly nonuniform network line ratios. In
particular, we consider a hypothetical set of identical generators
(B = 1) placed at each node of the IEEE 14-bus, 30-bus,
and 57-bus benchmark topologies [37]. We obtain values for
the reactances z;; for each &; € &£ from the benchmark system
data [37]. We then define a series of heterogeneous line ra-
tios by setting Tij = QG Tij, such that Qi = rij/xij = gij/bij
are randomly drawn from uniform distributions on the fol-
lowing range of intervals 0.4, 0.4 £ 0.025, 0.4 4+ 0.05, ...,
0.4 £ 0.2. Fig. 2 shows the resistive losses computed from
the result in Theorem 3.4 for a number of these systems.
The horizontal axis indicates the standard deviation of the line
ratios, and the bars represent the upper and lower bounds of the
inequality (19).

Fig. 2 shows that increasing the standard deviation of the line
ratios leads to a looser bound in (19). However, the resistive
losses of the system themselves show only small variations
as long as the average line ratio remains constant. Fig. 2 also
demonstrates that the transient losses strongly depend on the
network size (here 14, 30, or 57 nodes), which is consistent with

0.06
a;; Standard Deviation

Fig. 2. Transient resistive losses in modified IEEE 14 (bottom), 30 (middle),
and 57 (top) bus benchmark networks, randomly generated with lines of in-
creasingly varied random ratios cv;j = 7;5/x;;. The bars illustrate the bounds
in (19).

the relationship in (18). The small changes in the value of the
norm as the variance of the parameters is increased can also be
understood by considering Theorem 3.4 with the conductance
matrix decomposed as Lg = aLp + L. Then, (16) can be
rewritten as

«a 1 -
1HR, = 55 (N = 1)+ 5t (LhLo)

which shows that the deviation from the result based on
equal line ratios depends on the size of tr(LEEG). In Fig. 2,
this quantity is illustrated through the small deviations of the
computed norm values (round markers) from the horizontal
lines representing equal line ratios. For a meaningful choice
of «, such as the average line ratio, the entries of L will
take on positive and negative values, small in magnitude but
increasing as the variance in line ratios increases. Since Lg
is in the numerator of the generalized ratio tr(LgE(;), the
value of this ratio will be small. A formal proof of this fact
as well as the development of a closed-form expression for the
expectation values of the transient resistive losses subject to
different probability distributions of the line ratios are topics
of ongoing research.

B. Network Scaling for Topology Extremes

According to our results, the transient resistive losses in-
curred in resynchronizing a network of identical generators
increase unboundedly with the network size but are only weakly
dependent on the network topology. These losses also depend
on the ratio between susceptances and reactances of the lines
of the Kron-reduced network. In this example, we will compare
the H5 norm in (16) and the bounds discussed in Section IV for
systems with underlying graphs that are radial and complete as
their respective system sizes increase. These two topologies are
chosen because they represent the two extremes with respect
to connectivity and, therefore, provide insight into how the
transient loss relations described in the previous sections relate
to network topology.

We simplify the problem by assuming 5 = 1 and then assign
random line parameters to each line in the following manner.
We draw the line reactance x;; and line ratio cy; from a
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H2 norm

o bounds

o =
min max

|| = = = Eigenvalue ratio bound :
— )\z—bound

Fig. 3.

Ho norms for (a) a line graph and (b) a complete graph network of N nodes, with some of the bounds discussed in Section IV. Despite some variation

due to the randomness in the line parameters, the Ho norm scales directly with the network size and is roughly the same for the radial as for the complete
graph. The bound related to the Laplacian eigenvalue ratios (20) is the most accurate bound, and for the complete graph, the inequality (21) is linked to the
algebraic connectivity Az, also provides accurate bounds (for the radial graph, the latter have been omitted since they are off by orders of magnitude due to small

connectivity).

15 20

15 20

15 20

10 15 20

(b)

Fig. 4. Simulation of the 7-bus network of Fig. 1 with identical generators, a grounded node, and an additional (eighth) generator with (a) 10 times,
(b) the same, and (c) a tenth of the damping of the other generators. This generator is connected to the grounded node number 1. The system is subject to
random velocity and zero-phase initial conditions, so that the expected power losses correspond to the 72 norm. The losses are the largest in system (c), where
the lightly damped generator maintains its oscillation for a very long time, as predicted by Lemma 4.1.

normal distribution with mean 0.2 and standard deviation 0.1
(any negative values are replaced with the mean). As shown in
the previous example, one can then expect the norm for each
network to lie close to the result of (18), based on the mean
ratio @ = 0.2 and the number of nodes V.

Fig. 3 shows how the norm increases for the line and com-
plete graph systems as the network sizes increase from 5-node
to 50-node systems, with the bounds (19), (20) indicated on
both panels. Due to space constraints, we show the bounds in
(21) only in Fig. 3(b) since this bound is much tighter in the case
of complete graphs. For both types of networks, the eigenvalue
ratio in (20) provides the tightest bound and grows with IV in
the same fashion as the norm in (16). We also note that the
network-parameter-dependent bounds in (21) are more accurate
than the line ratio bounds in (19) for the complete graph.

C. Generator Parameter Dependence of Incremental Losses

We now characterize a particular case of a system with
nonuniform generators by examining the situation described in
the conditions of Lemma 4.1. For this example, we simulate
the 7-bus network depicted in Fig. 1 and set the impedances
of all lines &;; € £ in this network to z;; = z9 = 0.04 + j0.2.

We let node 1 be the grounded node, and assign to all generators
i =2,...,N = T7the parameters [38]: M; = 20/27 f and (3; =
10/27 f = 3y with a frequency f = 60 Hz for all <. We denote
this base system as H,.

We then compare the losses that arise from connecting
three different generators to node 1. The three generators
have Sny41 = Bs = 0.1y, Bo, and 105y, respectively, and the
connecting line has impedance z; g = 2p. Fig. 4 shows the
system trajectories of the three resulting reduced systems Hy,
when they are subjected to a random initial angular veloc-
ity disturbances, corresponding to the /2 norm interpretation
2) in Section II-B.

The expected power losses during the transient response for

. . =2
these respective systems are given by Lemma 4.1 as || H[|;,, =

||1T~{0||72{2 + (o1,8/20s) = 60.3, 26.4, and 23.0, respectively. For
the particular system trajectories shown in Fig. 4, the losses are
respectively 110, 32.2, and 23.7. The weakly damped generator
will experience strong oscillations and incur large losses before
it stabilizes at the same state as the grounded node. The system
that has a new highly damped generator incurs less oscillations
and lower transient losses than the system where an identical
generator is connected in the same location.
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Fig. 5.
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20 25

Simulation of oscillations in the reduced 7-bus system in Fig. 1 with node 1 grounded and (a) the strongly damped generators placed at the most highly

interconnected nodes, and (b) the strongly damped generators placed at the most weakly interconnected nodes. The system in (b) is less coherent and experiences
larger resistive losses during the transient response: 27.9 compared to 13.2 in system (a) for these particular trajectories.

D. Networks With Nonuniform Generators

Our final example further relaxes the assumption of equal
generator parameters. Consider the network depicted in Fig. 1
with equal line impedances z;; = 7;; + jv;; = 0.1+ j0.6. In
this network, nodes 1 and 7 have the smallest node degree
which we denote D1. Node 4 then has degree 4D, nodes 2 and
6 have degree 3D, and nodes 3 and 5 both have degree 2D;.
We set the generator parameters to M = 20/2x f for all nodes,
but let the damping 8 € (1/27f){2, 8, 14, 20} vary for each
of the four types of nodes, that is, nodes having degrees D1,
2D1, 3D1, or 4D1

We study this system under two conditions: (a) the strongly
damped generators are placed at highly connected nodes (i.e.,
matched dampings and degrees) and (b) strongly damped gen-
erators are placed at the least connected nodes (i.e., mismatched
dampings and degrees). We define ﬁmatch as the system cor-
responding to a network where the node degrees have been
matched to the size of the damping coefficients 5 (i.e., §; =
2 at nodes with degree Dy, 3; = 8 at nodes with degree 2D+,
Bi; = 14 at nodes with degree 3D+, and 3; = 20 at nodes with
degree 4D4) as in condition (a). We then denote the system
corresponding to a network where the degrees and damping are
mismatched as in condition (b) as H mismatch -

These systems are subjected to a random initial angular ve-
locity disturbance in the manner described in Section V-C. This

. ~ 2
leads to the expected transient power losses ||Hmatch||H2 =

18.9 and ||I~{mismatch||3{2 = 20.7. These results indicate that
there are lower losses for the system corresponding to case (a)
where the dampings are matched to the nodal degrees.

Fig. 5 shows the state trajectories of the two systems for
a particular input sequence. For this particular example, the
transient behavior of the system f{mismatch is clearly less
“coherent” than that of ﬁmatch. In addition, since the connec-
tivity of the graph underlying these networks is identical, the
additional oscillations in the phase angle will lead to increased
transient losses. This observation is verified when we compute
the respective losses for the particular trajectories shown. These
are 13.2 for the matched case in Fig. 5(a) and 27.9 for the mis-
matched case in Fig. 5(b). These results and similar case studies

have led us to conclude that for systems with nonuniform gen-
erator parameters, judicious network design that places well-
damped generators at highly interconnected nodes can reduce
transient power losses. An intuitive explanation to this is that a
well-damped generator is able to exert a larger effect on the
entire network if it is well connected than if it is remotely
located. However, note that although we are considering an
extreme case where the best damped generator has as much
as a 10 times larger damping coefficient than the most poorly
damped one, the total expected value for the transient losses
only differ by 10% between the most optimal and least optimal
generator arrangement for the particular example topology.

VI. CONCLUSION

We quantified the resistive line losses that occur due to
the power flows required to maintain synchrony in a power
network in the presence of persistent disturbances or tran-
sient events. These losses are the cost of using power flow
through transmission lines as the signaling mechanism for
synchronization control, which motivates the term “price of
synchrony.” In the special case of identical generators, we
derived a formula for the total transient losses expressed as a
generalized ratio of the weighted graph Laplacians representing
the conductance and susceptance matrices. We showed that
this quantity generally scales unboundedly with the number of
nodes (generators) in the system. For the special case where all
of the transmission lines have equal conductance to susceptance
ratios, we showed that the total transient resistive losses are
independent of network topology and directly proportional to
the number of nodes in the network. This topological indepen-
dence implies that while the highly connected network may
have better phase coherence and transient stability properties
than a loosely connected one, the two types are equivalent in
terms of the transient power losses required to maintain that
coherence. While this conclusion may at first seem surprising,
it becomes fairly intuitive when one considers the following
contrast between highly versus sparsely connected networks. A
highly connected and, therefore, highly phase-coherent network
has much smaller phase fluctuations than a loosely connected
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one. Therefore, while the “per-link” resistive losses are smaller
in the former, it has many more links than the latter and, thus,
the total losses summed over all links are the same for both
networks. While ongoing work [36] shows that the scaling
relationships are retained in network-preserving model with
load and asynchronous generator dynamics, an important future
research question is to determine the extent to which these
results can be extended to general power networks.

The results we present have some interesting implications
for the design of future power grids, which are expected to
be highly distributed. In particular, they indicate that transient
losses can grow unboundedly with network size. In addition, the
results indicate that this growth is unlikely to be mitigated by
increasing network coherence through additional transmission
linkages, unless these linkages focus on an optimal matching of
generator damping to the nodal degree. Such strategic addition
of generation at highly connected nodes may be impractical
for an existing system or when connecting new distributed
generation. These results point to a fundamental limitation to
a system where power flow (either in an open-loop system or
as regulated through a control device) is the mechanism by
which the system resynchronizes or maintains this state. The
analysis provided in this work may be particularly relevant
to future power networks that are likely to have orders of
magnitude more generators than today’s networks. In fact, these
results can be construed as an additional argument in support
of investigating the use of communication links (for phase and
frequency information) as an additional means of stabilizing
control in power networks.

APPENDIX
Proof of Lemma 3.2

Consider the following state transformation of the system (9):

o0 (U o||¢
2= 15 2[5
where U is the unitary matrix which diagonalizes Lp, that
is, U*LpU = Ap = diag{0, \Z,..., AR}, where 0 = AP <
)\123 <...< )\ﬁ are the eigenvalues of L. We have assumed,
without loss of generality, that U = [(1/v/N)1 wugy ... un],
where u;, for ¢ = 2,..., N are the eigenvectors corresponding
to the aforementioned eigenvalues.

Since the H2 norm is unitarily invariant, we can also define
w’' = U*w and 3y = U*y to obtain the system

afel [ o Lo [0y
dt || fﬁAB ,%] w' ﬁ[ W

1 0
y=|vLiu o Lj} 22)
Now, observe that
0 --- 0
U'LgU = | - j;G (23)
0

which implies that the first rows and columns of U*LgU and
Ap are zero. We thus have that the states 6 = (1/v/N)
SN 6;and W) = (1/VN) 32N | w; satisty the dynamics

0y = wi : (24a)
Wwh = —%w’l + M (24b)
Y, =0. (24c¢)

Equation (24) reveals that the associated mode, which corre-
sponds to the single zero eigenvalue of Lp, is unobservable
from the output. We denote the system associated with the this
mode as H{. The remaining eigenvalues of the system (22) lie
strictly in the left half of the complex plane because Lp is
positive semidefinite. It follows that the input—output transfer
function from w’ to 1/ is stable and has finite o norm.

By the equivalence of this system and H, we have thus
established the existence of the s norm for the system 1.

We can now partition the system into the subsystems Hj and
H. We take L¢ as the Hermitian positive definite submatrix
in (23) and define Ap = diag{\?, A\P,..., AR} and write the
input—output mapping H as

R B cvg R B
-1t ][

or < %ézA(/B%—BW;g:C(ﬁ.

Note that the systems H, and H are completely decoupled
and we therefore have that ||H||3, = ||Hi||$_[2 + ||ﬁ||3{2 =
1H |13, -

The H- norm can then be calculated in perfect analogy to the
derivations in Section III-B and we obtain that

1 YA
2 -1
IHl, = 550 (A5'Ea).

Now, we show that the result of Lemn}a 3.1 can be written in
terms of the state transformed matrices A g and L. Define the
N x (N — 1) and the (N — 1) x N matrices R and P by

(26)

0 .- 0
In—y

Iy 0
R: 7_ZD:

0 In_i

where k is the index of the grounded node and —1 is the
(N — 1) x 1 vector with all entries equal to —1. By this design,
Ap = RAgR, Lg = R'U*LGUR, and L, = P*L,cP.
Further, to simplify the notation, we define the (N — 1) x
(N — 1) nonsingular matrix V' = PU R. Then, we can write

tr (iglf@) =tr (VV_llN/jBl(V*)flV*i/G)

since VV 1 = (V*)flV* = I. By the cyclic properties of the
trace

tr (Vv-li;(v*)*lv*ig) _ (V—ligl(v*)*lv*igv)
— tr <(V*EBV)_1V*in> .



TEGLING et al.: PRICE OF SYNCHRONY

But V*LpV = RU*P*LpPUR=Ap and V*LgV =
R'U*P*LgPUR = L. Hence

tr (E*B%G) = tr (A;ﬁg) :
In conclusion

1. /e - 1 /- - _
1Hl = g5t (A5 L) = 55t (L5'La) = IR,

which proves the Lemma.

Proof of Lemma 3.3

By the proof of Lemma 3.2, we have that tr(L3'Lg) =
tr(A5'Le). Now

st o} afu])o(3 5 ]eo)

By definition, see, for example, [39], U*L%U = diag{0,
1/AB,...,1/ R}, which makes the above equivalent to
tr(U* LLUU*LoU) = tr(U*Li, LeU). But since the trace is
unitarily invariant, it follows that:

tr (/A\Jg,lﬁg) = tr (LTBLg)

which concludes the proof.

Proof of Lemma 4.1

Without loss of generality, choose the node the new generator
is connected to as the grounded node, and denote it by N.
Let M :=diag{M,,..., My}, B =diag{pi,...,0n}, and
denote the new (N + 1)th node as NI for notational compact-
ness. The reduced system H, can then be written as

0 0 0 In 0
g Onr | ~0 ~ 0 ~0 ~ 1
at | @ -M'Lp 0 -MTB 0
WNI 0 - AI}}\IJVII 0 _IETNNII
0 0
0 0 W
+ ./\;l_l 0 |:WN]:|
1
0 Mn1
) 0
[ y ] _ [f/é 0 0 0} On1 @7)
YNI 0 \IN,NI 0 0 w
WNT

Let the input—output mapping Hpy; be the SISO subsystem
of (27)

il )= [ B [S0] [k ]
dt |wnr _ﬁ}ij{l _A[j[NNII WNI 1\/1%\11 M

Onr }
WNT |

yn1 = [/INNT 0]{

From (27), it is clear that the systems f[o and H~ NT are entirely
decoupled and since we can write Hy = diag{ Ho, H; }

o2 2 2
1 H1ll3, = 1Holl3, + 1 Hnrll3,-

Now, the Ho norm of H n can be calculated in scalar analogy
to the derivation in Section III-B to yield

Hnll2, = L gnNI _ aNnNT
"z 28N1 by Nt 28N
which concludes the proof.
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