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Are there fundamental limitations to network performance?

Networked dynamical systems:  
global objectives, but local feedback



• Global control objectives:  
- common cruising speed 
- tight constant spacing  

• Dynamics (example): look-ahead, look-behind control 

Vehicle platoons: can global performance be 
ensured under disturbances?
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• What happens if the platoon grows?

v̄



Performance issues if control is based on 
relative measurements
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• Formation is stable  

• Spacings      are well-regulated (no collisions, no string instability!) 

• However - not a rigid formation, not coherent!  

• Fundamental limitation to local, static feedback (Bamieh et al., 2012)
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Can dynamic control laws help?

Time trajectories of 100 vehicles, relative to leader, seen from above

(zoomed in)
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• Performance: measure of coherence 
(deviation from network average)
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• Plant: Single / double integrator
/ẋk = uk + wk ẍk = uk + wk

• Control law:  consensus dynamics 

Relative feedback  

Absolute feedback (/self-damping)
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Setup: Evaluating performance of distributed 
control systems

• Additive white noise+ ++
wk wk+1wk�1
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Lemma: 
The squared H2 norm of (1) from input     to output     gives 

That is, the steady state output variance.

w y

||H||22 = lim
t!1

E{y⇤(t)y(t)},

Performance is evaluated through  
input-output H2 norms
Consider general linear system under white noise input
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ẋ = Ax+ Bw
y = Cx

Evaluating system performance amounts to evaluating H2 norms!

(1)

Recall: 
      Need to evaluate                        , with   Vk = E{(yk)2} yk = xk � 1

N

PN
j=1 xj .

With the appropriate output, performance is given by H2 norm!



• Unitary transformation does not change 
H2 norm   

• (Block-) diagonalize to obtain  
N decoupled subsystems  

• H2 norm is sum of subsystem norms: 

Unitary transformation simplifies H2 norm 
evaluation 1(2)
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Ĥn :
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• Zero mode associated with drift of average makes       non-Hurwitz. 
• Mode unobservable, so                  .            
• Only sum over remaining, stable, subsystems: ||H||22 =

NX

n=2

||Ĥn||22

Â1!
||Ĥ1||22 = 0



• For n such that        Hurwitz,                                       ,  where 

Example: 
Assume                          , then                    is scalar. Here,             .      

Then (1) gives  

 
so                                 .

B̂n = 1

||Ĥn||22 = Xn =
ĉ2n
2�A

n
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2
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n }

Unitary transformation simplifies H2 norm 
evaluation 2(2)
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Zd
N

d = 1 d = 2 d = 3

+periodicity

M = Nd

- Spatial invariance!

• Network structure: d-dimensional discrete torus      . Network size:                .

11Graph figures from graph-tool.skewed.de

- Vehicular formations (2nd order)

• Dynamics:   - Consensus (1st order) ẋk = uk + wk

ẍk = v̇k = uk + wk

Consensus and vehicular formation problems 
modeled over toric lattices  

• Control: Standard, static feedback
- Consensus: uk = (Fx)k

uk = (Fx)k + (Gv)k- Vehicular formations: Only feedback from 
local neighborhood!

- F, G are spatial convolution operators  
(look like graph Laplacians / Toeplitz matrices)

http://graph-tool.skewed.de


• Study asymptotic scaling of  
• The better Vk scales, the more coherent the system 
• Fully coherent if Vk does not grow as network size M

With static feedback: performance scales badly 
in low lattice dimensions
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Asymptotic scalings with static feedback (Bamieh et al., 2012)
Up to a constant independent of gain parameter    and network size M�

Can dynamic feedback 
improve this scaling?
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Introducing distributed dynamic feedback:  
control with memory

Additional 
controller state!
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• Proposed control: General dynamic feedback
- Consensus:

- Vehicular formations:
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uk = (Fx)k + (Gv)k + zk

żk = (Az)k + (Bx)k + (Cv)k

uk = (Fx)k + zk

żk = (Az)k + (Bx)k



Bad performance scaling is caused by  
eigenvalues near zero
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Example (Standard consensus, 1st order):

ẋk= �(xk+1 � xk) + �(xk�1�xk) + wk

Re

Im

• As N grows: Arbitrarily many      increasingly close to zero - sum blows up! 

• Need 3 spatial dimensions (d = 3) for sum to not scale worse than M = Nd.
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Recall: 
      Feedback operators are circular convolution operators on       ,  
      for example

uk = (Fx)k =
P

l2Zd
N
fk�lxl

Evaluating performance in the limit from  
finite to infinite lattices 1(2)
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Evaluating performance in the limit from  
finite to infinite lattices 2(2)
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• H2 norm is a sum over subsystem norms (traces of Gramians) 
• Idea: Estimate sum using integral 
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- See paper for technical details 
- Holds for all             , for some fixed    , (hence “asymptotic scalings”).    N > N̄ N̄



• Sum estimated through integral like 

• Typically,            has singularity at zero 

• Order of singularity p determines 
scaling of H2 norm in N

Asymptotic performance scaling is determined 
by how fast Gramian “blows up”
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• Only relative feedback from x, v  
-  F, G, B, C all have zero eigenvalues!

Recall: dynamic feedback laws

Dynamic feedback does not change scaling  
- if feedback is relative

19

Pk Pk+1Pk�1

Ck Ck+1Ck�1

zk zk+1zk�1

…

… …

…

p: order of 
singularity
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• Scaling of Gramian unchanged 
- Consensus 

- Vehicular formations



• Dynamic feedback with absolute velocities can give “absolute position feedback”:  
improves performance! 
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Performance can be improved if absolute 
feedback available
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Distributed averaging 
PI control (DAPI)

With perfectly noise- 
less measurements!
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Improved 
performance!

• With noisy measurements - distributed averaging of memory states needed 



DAPI improves performance if absolute velocity 
measurements are available

21

• With noise: cannot achieve full coherence  

• Still, performance improvement if noise small  

• Useful if speedometers available, but absolute position unknown  

• Also improves performance in power networks (ET et al., ACC 2016)

Static feedback Dynamic feedback (DAPI)

Time trajectories of 100 vehicle platoon, with rel. position, abs. velocity feedback 

time (seconds) time (seconds)
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Summary: Dynamic feedback does not achieve 
full coherence in low spatial dimensions

• Objective: Can dynamic feedback improve coherence of large-scale 
consensus and vehicular formation systems?  

• Analyzed using spatial Fourier transforms, in limit of infinite lattice 

• No performance improvement with only relative state feedback 

• If absolute velocity feedback available: distributed PI control improves 
performance, but only ideally achieves full coherence in 1D 

• (Not covered: many dynamic feedback laws unstable for large networks) 

See also: E. Tegling: On performance limitations of large-scale networks with 
distributed feedback control, Licentiate thesis, KTH, May 2016 
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Future work includes further exploration of 
distributed dynamic feedback

• Higher-order controllers 
• DAPI control architecture
• Other performance metrics
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Topics to explore

H2 vs. H1 vs. … 
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Additional material



Stability criteria: 1st order consensus with 
dynamic feedback
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The system (1a) with fixed feedback operators A, B, F can be input-output 
stable with respect to the output (1b) for any lattice size N only if:

Theorem

y =
⇥
0 I � 1

M J1

⇤ 
z

x

�
(1a)

(1b)

A. The operator B is symmetric around each network site, or 
B. The operator A involves absolute feedback 
or both. 



Stability criteria: vehicular formation dynamics 
with dynamic feedback
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Assume that only relative measurements of x and v are available.  
The system (2a) can be input-output stable w.r.t. the output (2b) for any 
lattice size N only if:

Theorem 1 (conditions with only relative state feedback)
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A. The operator B = 0,  while A is non-zero, or 
B. The operator A involves absolute feedback, or both.
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Theorem 2 (integral control with absolute position feedback)
Assume that B involves absolute feedback from x. Then, a necessary 
condition for stability is that there is also absolute feedback from v.  



Example: Explicit asymptotic performance of 
standard consensus algorithm.
• Standard consensus algorithm in 1D: 

• or  
with 

• The Z-transform becomes: 

• The Lyapunov equation gives the Gramian: 

• The integral becomes: 

• Evaluated at                :  

• which scales as         asymptotically.
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