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Networked dynamical systems:
g/oba/ objectives, but /ocal teedback

C Are there fundamental limitations to network performance? ) i




Vehicle platoons: can global performance be
ensured under disturbances?
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Global control objectives:
common cruising speed v
tight constant spacing A

Dynamics (example): look-ahead, look-behind control
Tp =0k = [+(@pr1 — 2 — A) + fo(Tp—1 — 25 — A)+

+9+(Ul~c+1 - Uk) T 9—(%—1 — Uk) T Wk
(f+, f—, 9+, 9- constant gains)

With disturbances: objectives only achieved approximately

What happens if the platoon grows?



Performance issues if control 1s based on

relative measurements
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Time trajectories of 100 veh/'c/es, relative to leader, seen from above
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to local, static feedback (Bamieh et al., 2012)
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Fundamental |

Can dynamic control laws help?



control syst

—va

uating performance of distributed
ems

Performance: measure of coherence

2
(deviation from network average) 1 O

Plant: Single / double integrator
«—> Py |0 :bk:uk+wk/fék:uk+wk
L <kt Additive white noise
Uk Uk+1 ,
Control law: consensus dynamics

> Cpt1 |- U = Z fjk(fj_zk)+ Z fjk(ij_ik)

JEN JEN

Relative feedback
- f oLk — Yo 7 k
Absolute feedback (/self-damping)
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Performance is evaluated through
iInput-output Hz norms

Consider general linear system under white noise input
= Ax + Bw
y=Cx

Recall: N
Need to evaluate Vi, = E{(yx)?}, with yr = 1 — 5 21 T;-

Lemma:
The squared Hznorm of (1) from input wto output Y gives

|H|Z = Jim E{y* (t)y(1)},

That is, the steady state output variance.

With the appropriate output, performance is given by Hz norm!

Evaluating system performance amounts to evaluating H2 norms!



Unitary transtormation simplifies Ho norm
evaluation

] C T Unitary transformation does not change

A 44 R H2 norm
- L 1 A (Block-) diagonalize to obtain
H - ~ Y N decoupled subsystems /1,
AN N B
§ = { . ] 4 H2 norm is sum of subsystem norms:
D
¢

N
[HIZ3 =123 =) [1H.I3
n—=1

Zero mode associated with drift of average makes A7 non-Hurwitz.
Mode unobservable, so ||H1||2 = 0.

N
Only sum over remaining, stable, subsystems:  [|H|[3 = ||4,|3
n=2



Unitary transtormation simplifies Hz2 norm
evaluation

N
Hz norm evaluated as sum of subsystem norms: |[H|[3 =) [|,[3
n=2

For n such that A,, Hurwitz, ||H,,|2 = t1 (B;Xnén) , Where

Exam,o/e:A
Assume A = —diag{\'} then A,, = —\2 is scalar. Here, B, = 1.

=1 with given output
22 / g P
mn

Then (1) gives Hﬁan = X, = I\A

N & : :
so [[H||3 = 5> n—s f? | Eigenvalue of A

. . . N 1
H> norms involve sums over inverted eigenvalues, ang A
T
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Consensus and vehicular formation problems
modeled over toric lattices

Network structure: d-dimensional discrete torus Z%,. Network size: M = N

d=1 d=2 553 d=3
o ® ® 0 o g 952 A St
- -
® o o ¢ 0 © i
o . +periodicity
Spatial invariance!
Dynamics: - Consensus (1st order) T = Uk + Wy
Vehicular formations (2nd order) T = Vg = Uk + Wy
Control: Standard, static feedback
Consensus: Up = (ng)k r— S s g
| | BT R |
Vehicular formations:  ur = (Fz)r + (Gv), Only feedback from

local neighborhood!

E G are Spa’[ial convolution Opel’a’[OI’S et evereteaeaeeteeeaeenetesanenaneanenetesanenansaneneenanaent®
(look like graph Laplacians / Toeplitz matrices)


http://graph-tool.skewed.de

With static feedback: performance scales badly
In low lattice dimensions

Study asymptotic scaling of Vi = E { (a: — ﬁ Zjezﬁl\r a:j)} — ﬁHHH%
The better Vi scales, the more coherent the system

Fully coherent if Vi does not grow as network size M — oo

Asymptotic scalings with static feedback (Bamieh et al., 2012)
Up to a constant independent of gain parameter [3 and network size M

| 1

Absolute x, v Vi ~ 5

Relati .

Sat;vte - Vi ~ 3 Qloghl  d =2

a solute v \ 1 d > 37
(M3 d=

ER - ! M d=2

ea.’[IVeX, VkN?<M1/3 d = v MR R R

relat|Ve V log M d _ 4 0 100 200 300 400 xlx_, 600 700 800 900 1000
\1 d> b,




Introducing distributed dynamic teedback:
control with memory

Pr1 s 1 P [ ~ Pri1
Ck—l Ck: Ck'—l—l
A oz R Additional
L L : S : -.......:| 1 controller state!

Proposed control: General dynamic feedback
Consensus: e ..

uk = (F2)k + 21 H _ {A B} H
4= (A2)e + (Bx)w @] I F]|=

. .
. .
.........................................................................................

-----------------------------------------------------------------------------------------------------------------
*

Vehicular formations: - _ . o
Up = (F:E)k—I—(GU)k = 27

*
.................................................................................................................




Bad performance scaling is caused by
eigenvalues near zero

Example (Standard consensus, 18t order): o © © 0 o o

r=Fx+ w ®-eroe o ©

D e e e e e e B e R e e e e e R e e I e e e e e e e = e e e e e e e e e e e = e e e e e e e e e e e e = e e e e e

N
Recall: 1 1 1
2
Vi=<H|3= 5% D <F
N 2N A5
N - - o .
Eigenvalues 2n
A\ =28 (1 — COS —)
N Im
WOCK KK KKK K KK K X X X =
-2 1,5 -1 0,5

As N grows: Arbitrarily many Agincreasingly close to zero - sum blows up!

Need 3 spatial dimensions (d = 3) for sum to not scale worse than M = N
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—valuating performance in the limit from
finite to Infinite lattices

Recall.:
Feedback operators are circular convolution operators on Z?\,,
for example U — (F:B)k — ZZEZ?\, fk_la:‘l
: F : : : 2mn
Eigenvalues A, Spatial discrete Fourier transforms . ot “y N
A i g o
]IVI I e e I]IV f, = Z fe Imnk % T
D) D) kezZd, e d o’
1
In limit of infinite lattice:
Z-transforms 0
A fa(0) = ) fre 0
keZa



—valuating performance in the limit from
finite to Infinite lattices

H> norm is a sum over subsystem norms (traces of Gramians)

[dea: Estimate sum using integral

xtr(e)
N/2 . 1
Z 1 Riemann sum / — d6
B i approximation of or , {o;( )
N
SRR R I Imﬁ-- '-ﬁml

See paper for technical details

Holds for all N > N, for some fixed N, (hence “asymptotic scalings”).



Asymptotic performance scaling is determined
by how fast Gramian “blows up”

T 2t (6) Sum estimated through integral like
1
alis / L
BN . foo (6)
fn n S 0] < itr(e) “Gramian fctn”
Typically, 2'"(0) has singularity at zero
Order of singularity p determines
scaling of H2 norm in N
ZIN
L E-2.3.2 —
Lemma Nvdif d < p
it 27 (0) ~ : th Ve~ —dlog N if d—
80]P e STYPI Bt La=p
1 it d>p

(Notation u(z) ~ v(x) means u(x)/v(x) uniformly bounded)



Dynamic feedback does not change scaling

- If feedback is relative

Recall: dynamic feedback laws
2 |A B |z 0
i = (1 F||z| T || "

13 (0)

— | &—

p. order of
singularity

~N O
o ™
O~ Q

S 8. N,

~N O O

|

|

Only relative feedback from x, v
- F, G, B, C all have zero eigenvalues!

Scaling of Gramian unchanged
Consensus

—1 1
C%tr(e)

T 2f(0)200(0) 1862

8o P =2
From dynamic feedback
Vehicular formations

R d 1
> 2£(0)9(0)+200(0)  |BEJE P =4

From dynamic feedback



Performance can be improved if absolute
feedback available

Asymptotic performance scalings for the vehicular formation problem:

Static feedback Dynamic feedback
!
Absolute x, v Vig ~ 3 Same!
- (M d=1 | J
Relative x, Vi ~ 1 LlogM  d =2 Vi ~ L1 with perfectly noise- mprove
absolute v SRR? | & ) - 5 B less measurements! :performance!
= 3,

(M8 d—

ot | A=
éReIa.Uve X, Vi, ~ 7 D MYE g —3 gSame!
érelat|ve v log M d =4 -
..................................................................................... \1d25’

Dynamic feedback with absolute velocities can give “absolute position feedback”:
improves performance!

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

ur = relative feedback — g,vr + 2g Distributed averaging

&k = a4 (2k+1 — 2k) + a—(2k—1 — 2k)—CoUk Pl control (DAPI)

With noisy measurements - distributed averaging of memory states needed



DAPI| improves performance if absolute velocity
measurements are available

o] o} o} (o} o)
SRR R

time (seconds) time (seconds)

* With noise: cannot achieve full coherence
« Still, performance improvement if noise small
«  Useful if speedometers available, but absolute position unknown

= Also improves performance in power networks (ET ef al., ACC 2016)

21
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Dynamic feedback does not achieve
full coherence in low spatial dimensions

Objective: Can dynamic feedback improve coherence of large-scale
consensus and vehicular formation systems?

Analyzed using spatial Fourier transforms, in limit of infinite lattice
No performance improvement with only relative state feedback

It absolute velocity feedback available: distributed Pl control improves
performance, but only ideally achieves full coherence in 1D

(Not covered: many dynamic feedback laws unstable for large networks)

See also: E. Tegling: On performance limitations of large-scale networks with
distributed feedback control, Licentiate thesis, KTH, May 2016




Future work Incluo

distributed dynam

Topics to explore
Higher-order controllers

es furt
IC feecC

DAPI control architecture

Other performance metrics

s g iy o
. ?Zfﬁﬁiﬁfﬁﬁfi .
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Ho vs. Haoo vs. ...



Thank you!
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Ollity criteria: 1st order consensus with

dynamic teedback

Z o A B < —|— O P i | P L
o =1 Fllz| 7] (1a) : :
1 Z o -
Yy = [() J — H«]ﬂ LJ (1b) 1 - 1
Theorem

The system (1a) with fixed feedback operators 4, B, F' can be input-output
stable with respect to the output (1b) for any lattice size N only if:

A. Th
B. Th

e operator B is symmetric around each network site, or
e operator 4 involves absolute feedback

or both.




Stability criteria: vehicular formation dynamics
with dynamic feedback

z A B C| [z 0]
Tr| = 0 0 I x| + Ol w (2a) Pi1 | A Pk
_?'J_ _I F G_ | _I ) f f
2 g A o
y=10 I-m/1 M (20) s L

Theorem 1 (conditions with only relative state feedback)
Assume that only relative measurements of x and v are available.

The system (2a) can be input-output stable w.r.t. the output (2b) for any
lattice size N only if

A. The operator B =0, while 4 is non-zero, or
B. The operator 4 involves absolute feedback, or both.

Theorem 2 (integral control with absolute position feedback)
Assume that B involves absolute feedback from x. Then, a necessary
condition for stability is that there is also absolute feedback from v.




-xample: Explicit asymptotic performance of

standard consensus algorithm.
Standard consensus algorithm in 1D: o 0-0-09

~

U = f[(iEk—l — Ik) + (CEk+1 — Zli'k)]

or uk_ZlEZN fk [ L]
with fO _2f7 fl f—l_f7 andfk—()for ‘k’>1

The Z-transform becomes: foo (8) = (=2 + €79 + ¢=99) = —2f(1 — cos9)

The Lyapunov equation gives the Gramian:
1 —1 1 1

~tr (9 — — _
£ (0) 2 fo(0) f1—cosf
The integral becomes:
1 1
4f Ja<join 1 — cosd
Evaluated at A = =7
I<47r) —1{ ter 1 T
— — ——= [ COlU — — ——= COlU —
N 2 f 2] 2z 12f N

which scales as N/f asymptotically.



