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Networked systems: global objectives,  
but local feedback

2
Are there limitations to network performance?



• Objectives:  
- common cruising speed 
- tight constant spacing  

• Dynamics (example): look-ahead, look-behind control 

Example 1: Vehicle platoons can reduce 
emissions and increase road throughput 
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• With disturbances: objectives only achieved approximately 
• What happens if the platoon grows?
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Example 1: Performance issues if control is 
based on relative measurements

4

• Formation is stable  

• Spacings      are well-regulated (no collisions!) 

• However - not a rigid formation, not coherent!  

• Fundamental limitation to local, static feedback (Bamieh et al., 2012)
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Can dynamic control laws help?

Time trajectories of 100 vehicles, relative to leader, seen from above
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• Objectives:  
- common, steady frequency (50 Hz) 
- phase angles at equilibrium 

Example 2: Transition to a greener power system 
affects network synchronization
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• More disturbances due to  
- renewable, intermittent generation 
- changing load patterns  

• Networks grow as generation becomes distributed
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Introduction and problem formulation
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Evaluating input-output performanceH2

Case 1: Regular lattice networks, coherence

Case 2: Power networks, price of synchrony
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• Control law:  consensus dynamics 

Relative feedback from    , x

ẋ

Absolute feedback (/self-damping)
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Setup: The distributed control problem 

• Additive white noise

• Plant: Single / double integrator
ẋk = wkuk + wk / wkuk + wkẍk =

+ ++
wk wk+1wk�1

Pk Pk+1Pk�1

Ck Ck+1Ck�1

Performance objective

uk uk+1uk�1

…

… …

…



Local error 
- lack of synchrony 

• Deviation from neighbor average 

• Characterizes lack of local order, 
or synchrony 

Setup: Performance is evaluated through global 
and local measures of “disorder”

Global error 
- coherence 

• Deviation from network average 

• Characterizes rigidity, coherence
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……
xk xk+1xk�1

y

dav
k = xk � 1

N

NX
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xj

• Performance is measured through variance: 

• Note! Two distinct performance measures  (c.f.          vs          )

t
0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

t
640 660 680 700 720 740

70

75

80

85

90

95

100

Vk = E
n

(yk)
2
o

y

loc

k

=
X

j2Nk

a

j,k

(x
k

� x

j

)



9

Objective: characterize performance in  
large-scale networks

…

… …

…

Vk = E
n

(yk)
2
o

•   Performance: 

, or yk = local erroryk = global error

+ ++
wk wk+1wk�1

Pk Pk+1Pk�1

Ck Ck+1Ck�1

Performance objective

uk uk+1uk�1

, where

How does performance depend on: 
• Network size 
• Network topology / controller structure 
• Static or dynamic feedback 

What fundamental limitations are there?
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Introduction and problem formulation
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Evaluating input-output performanceH2

Case 1: Regular lattice networks, coherence

Case 2: Power networks, price of synchrony
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Lemma: 
The squared H2 norm of (1) from input     to output     gives 

That is, the steady state output variance.

w y

||H||22 = lim
t!1

E{y⇤(t)y(t)},

Performance is evaluated through  
input-output H2 norms
Consider general linear system under white noise input
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ẋ = Ax+ Bw
y = Cx

Evaluating system performance amounts to evaluating H2 norms!

(1)

Recall: 
      Need to evaluate                        , with e.g.  Vk = E{(yk)2} yk = xk � 1

N

PN
j=1 xj .

With the appropriate output, performance is given by H2 norm!



• Unitary transformation does not 
change H2 norm   

• (Block-) diagonalize to obtain  
N decoupled subsystems  

• H2 norm is sum of subsystem norms: 

Unitary transformation simplifies H2 norm 
evaluation 1(2)
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Â

x̂+

2

4
. . .
. . .

3

5

| {z }
B̂

ŵ
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||Ĥn||22

˙̂
xn = Ânx̂n + B̂nŵn

ŷn = Ĉnx̂n

Ĥn :

N⇥N
Ĥn :

• Zero mode associated with drift of average makes       non-Hurwitz. 
• Mode unobservable, so                  .            
• Only sum over remaining, stable, subsystems: ||H||22 =

NX

n=2

||Ĥn||22

Â1!
||Ĥ1||22 = 0



• For n such that        Hurwitz,                                       ,  where 

Example: 
Assume                          , then                    is scalar. Here,             .      

Then (1) gives  

 
so                                 .

B̂n = 1

||Ĥn||22 = Xn =
ĉ2n
2�A

n

||H||22 = 1
2

PN
n=2

ĉ2n
�A
n

Ân = ��A
nÂ = �diag{�A

n }

Unitary transformation simplifies H2 norm 
evaluation 2(2)
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H2 norm evaluated as sum of subsystem norms: ||H||22 =
NX

n=2

||Ĥn||22

Ân ||Ĥn||22 = tr
⇣
B̂⇤
nXnB̂n

⌘

Â⇤
nXn +XnÂn = �Ĉ⇤

nĈn. (1)

=1 in Part 1

Eigenvalue of    ! A

H2 norms involve sums over inverted eigenvalues,                   !
PN

n=2
1
�A
n
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Case 1: Regular lattice networks, coherence
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Zd
N

d = 1 d = 2 d = 3

+periodicity

• Network: d-dimensional discrete torus       . Network size:                .

15Graph figures from graph-tool.skewed.de

- Vehicular formations (2nd order)

• Dynamics:   - Consensus (1st order) ẋk = uk + wk

ẍk = v̇k = uk + wk

Consensus and vehicular formation problems 
modeled over toric lattices  

M = Nd

• Control: Standard, static feedback
- Consensus: uk = (Fx)k

uk = (Fx)k + (Gv)k

ẋ

v̇

�
=


0 I

F G

� 
x
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�
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I
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w

ẋ = Fx+ w

- Vehicular formations:

(F, G look like graph Laplacians!)

Only feedback from 
local neighborhood!

http://graph-tool.skewed.de


• Study asymptotic scaling of the variance 
• The better Vk scales, the more coherent the system 
• Fully coherent if Vk does not grow as network size M

With static feedback: performance scales badly 
in low lattice dimensions
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Asymptotic scalings with static feedback (Bamieh et al., 2012)
Up to a constant independent of gain parameter    and network size M�
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M
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j=1 xj)
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Introducing distributed dynamic feedback:  
control with memory

Additional 
controller state!

Pk Pk+1Pk�1

Ck Ck+1Ck�1

zk zk+1zk�1

…

… …

…

• Proposed control: General dynamic feedback
- Consensus:

- Vehicular formations:


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Bad performance scaling is caused by  
eigenvalues near zero
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Example (Standard consensus, 1st order):

ẋk= �(xk+1 � xk) + �(xk�1�xk) + wk

Re

Im

• As N grows: Arbitrarily many      increasingly close to zero - sum blows up!
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Evaluating performance in the limit from  
finite to infinite lattices
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f̂n :=
X

k2Zd
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fke
�j 2⇡

N n·k,
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�N

2

2⇡n
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• Eigenvalues              Spatial discrete Fourier transforms      �F
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• H2 norm can be estimated using integral
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• Sum estimated through integral like 

• Typically, singularity at zero 

• Order of singularity p determines 
asymptotic scaling of H2 norm

Asymptotic performance scaling is determined 
by how fast function “blows up”
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• Only relative feedback from x, v  
-  F, G, B, C all have zero eigenvalues! 

• Scaling of integrand unchanged 
- Consensus 

- Vehicular formations

Recall: dynamic feedback laws

Dynamic feedback does not change scaling  
- if feedback is relative
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p: order of 
singularity

p = 2

p = 4

From dynamic feedback
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Performance improves if absolute feedback 
available
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Asymptotic performance scalings for the vehicular formation problem:
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Distributed averaging of z

Distributed averaging 
PI control (DAPI)

• Dynamic feedback with absolute velocities substitute absolute positions:  
improves performance!  

• With noisy measurements - distributed averaging of memory states needed 

Assuming noiseless 
measurements!

Vk ⇠ 1

�

Same!

Same!

Improved 
performance!



DAPI improves performance if absolute velocity 
measurements are available

23

• With noise: cannot achieve full 
coherence 

• Still, performance improvement if 
noise small  

• Useful if speedometers available, 
but absolute position unknown  

• Same feedback situation as in 
power networks (Part 2)!

Static feedback

Dynamic feedback (DAPI)

Time trajectories in 100 vehicle platoon w.r.t. leader 
(page 51 in thesis!) 

time (seconds)

time (seconds)



Summary: Regular lattice networks,  
coherence

• Objective: Can dynamic feedback improve coherence of consensus and 
vehicular formation systems?  

• Analyze using spatial Fourier transforms, in limit of infinite lattice 

• No improvement with only relative state feedback 

• Distributed PI control improves performance if absolute velocity 
feedback available

24

…

…

More in the thesis:
• Criteria for stability with dynamic feedback
See also:
E. Tegling, P. Mitra, H. Sandberg, B. Bamieh: Coherence and stability in large-scale networks 
with distributed dynamic feedback. In prep. To be presented at MTNS, Minneapolis,  Jul 2016.  
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Evaluating input-output performanceH2

Case 1: Regular lattice networks, coherence

Case 2: Power networks, price of synchrony
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Conclusions and future work
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Lack of synchrony causes power losses - 
measure of performance
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Analogy due to F. Dörfler et al. 

Performance measure: cost of maintaining synchrony 
• Assume stable operating conditions 
• Assume distributed stochastic disturbances  
• Quantify power losses during re-synchronization  
• A local performance measure 



Power network is modeled through coupled 
swing equations 

27

• Network: N-node graph representing AC power lines between generators. 
• Weighted graph Laplacians LB, LG 

- Susceptance matrix LB, weights 
- Conductance matrix LG weights

bij , gij
i

j

bij
gij

✓i

• Swing equation: 

(     phase angle, mi inertia, di damping)✓i

mi✓̈i + d✓̇i = Pm,i � Pe,i

• Electric power flow: Power injection at node i Pe,i =
X

j2Ni

bij (✓i � ✓j)
(      neighbor set of node i, bij line susceptance)Ni

• System:   
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Power losses measured through appropriate 
performance output

28

• Power loss over line i,j (Ohm’s law, quadratic approximation):  

• Total losses over network:

P loss ⇡ gij(✓i � ✓j)
2

Ploss =
X

eij2E
gij(✓i � ✓j)

2 = ✓⇤LG✓

Expected losses now given by the system’s H2 norm

• Set performance output to:

Recall: H2 norm for general system under white noise input:

||H||22 = lim
t!1

E{y⇤(t)y(t)},

y(t) = L1/2
G ✓(t)

( gij line conductance)



This represents the expected power loss incurred in maintaining synchrony

Main result: Losses given by generalized graph 
Laplacian ratio
• Assume uniform generator damping di = d

29

Theorem

- LB  conductance matrix 
- LG  susceptance matrix 
- d    generator damping 
-       Moore-Penrose pseudo inverse

||H||22 =
1

2d
tr
⇣
L†
BLG

⌘

†



• Assume equal conductance-to-susceptance ratios:  

Special case: no topology dependence if 
network line ratios are equal

30

Corollary

N: number of generators 

gij
bij

= ↵

||H||22 =
↵

2d
(N � 1)

• Grows unboundedly with network size N
• Entirely independent of network topology!

vs.

Less “coherent”
Larger phase fluctuations
Less links
Same transient power losses

More “coherent”
Smaller phase fluctuations
More links
Same transient power losses

<
>
<
=



Complete graph topology

Ring graph topology

High connectivity gives faster synchronization, 
but requires more power flows
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Synchronization transients in 20 node networks

• Faster synchronization and tighter phases in complete graph 
• Same total losses over the transient

31



Implications: potential for large losses with 
distributed generation

• Transient losses scale with network size 
• No improvement by increasing number of links 
• Fundamental limitation - if using electric power flows for synchronization

32

Source: DoE, Smart Grid Intro, 2008 

Can dynamic feedback improve performance?



Can dynamic feedback (PI control)  
improve performance?

Distributed averaging PI control (DAPI)

33

⌦i

!i = ✓̇i
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     : Additional controller layer

Centralized averaging PI control (CAPI)

Distr. averaging of ⌦

(      neighbor set of node i,  cij constant gains, here cij =   bij, q integral gain)NC
i

• Controllers proposed by Simpson-Porco et al. (2013), and Andreasson et al. (2014) 
for elimination of stationary control errors

⌦i

!i = ✓̇i
✓i

!̇i = [swing equation] +⌦i

q ˙⌦i = �!i�
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j2NC
i

cij(⌦i � ⌦j)

!̇i = [swing equation ]+⌦

q ˙⌦ = � 1

N

X

i2V
!i

Centr. averaging of !

�



CAPI leaves performance unchanged,  
while DAPI reduces losses 

34

Theorem
||HCAPI||22 =

↵

2d
(N � 1) ||HDAPI||22 =

↵

2d

NX

n=2

1

1 + �⌧�n+q
��n(�⌧�n+q)+q2m�n

• DAPI control reduces losses
• Smaller losses for sparse topologies 
• Losses still grow with network size N

>
Same as before! Topology dependent!
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vs.

N-1 terms, each<1
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Self-damping key to improved performance

• DAPI provides substitute for absolute phase feedback (self-damping) 

• “Cheaper” to rely on self-damping as power flows associated with costs
• Need to align with neighbors — but too strong alignment reduces self-

damping effect

D
AP

I
C

AP
I

!̇ = relative feedback� di!i �
1

q

Z t

0
!(⌧)d⌧

| {z }
!✓i

Synchronization transients in 20 node network

35

Distr. averaging of ⌦

Average of !



Summary: Power networks,  
price of synchrony

• Measure performance of power networks in terms of losses incurred in 
synchronization 

• With standard control, losses increase with network size, but do not 
depend on network connectivity 

• Distributed PI control can reduce losses by emulating self-damping

36

…

More in the thesis
• Elaboration on H2 norm interpretation in terms of power losses 
• Renewable energy integrated grids 

- microgrids with variable voltages 
- heterogeneous oscillator networks 

• Optimal configuration of the DAPI controller 
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Summary: Power networks,  
price of synchrony
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…
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See also:
• E. Tegling, B. Bamieh and D. F. Gayme: The price of synchrony: Evaluating the 

resistive losses in synchronizing power networks. IEEE TCNS, Sep 2015 
• E. Sjödin and D.F. Gayme: Transient losses in synchronizing renewable energy 

integrated power networks. ACC, Jun 2014. 
• E. Tegling, D. F. Gayme, and H. Sandberg: Performance metrics for droop-controlled 

microgrids with variable voltage dynamics. CDC, Dec 2015. 
• E. Tegling, M. Andreasson, J. W. Simpson-Porco, and H. Sandberg: Improving 

performance of droop-controlled microgrids through distributed PI-control.  
ACC, Jul 2016. 
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Evaluating input-output performanceH2

Case 1: Regular lattice networks, coherence

Case 2: Power networks, price of synchrony

……

Conclusions and future work
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Scaling of performance is a limitation in 
networked systems with local feedback 

39

• Power losses caused by local disorder 
• Measured over entire network
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• Performance improvement • No performance improvement

• Absolute feedback key in improving performance 
• Dynamic control laws can emulate absolute feedback, if distributed! 
• Limitation in terms of scaling remains 

• Global disorder 
• Measured per node

• Scaling (worst case):
Vk ⇠ N3 Ploss ⇠ N

• Scaling:

Case 1: Coherence Case 2: Price of Synchrony



Future work includes further exploration of 
distributed dynamic feedback

• Higher-order controllers 
• DAPI control architecture
• Other performance metrics

Pk Pk+1Pk�1

Ck Ck+1Ck�1

zk zk+1zk�1

Pk Pk+1Pk�1

Ck Ck+1Ck�1

zk zk+1zk�1

Pk Pk+1Pk�1

Ck Ck+1Ck�1

zk zk+1zk�1

Pk Pk+1Pk�1

Ck Ck+1Ck�1

zk zk+1zk�1

Pk Pk+1Pk�1

Ck Ck+1Ck�1

zk zk+1zk�1

… …

………
Topics to explore

H2 vs. H1 vs. … 



Thank you!


