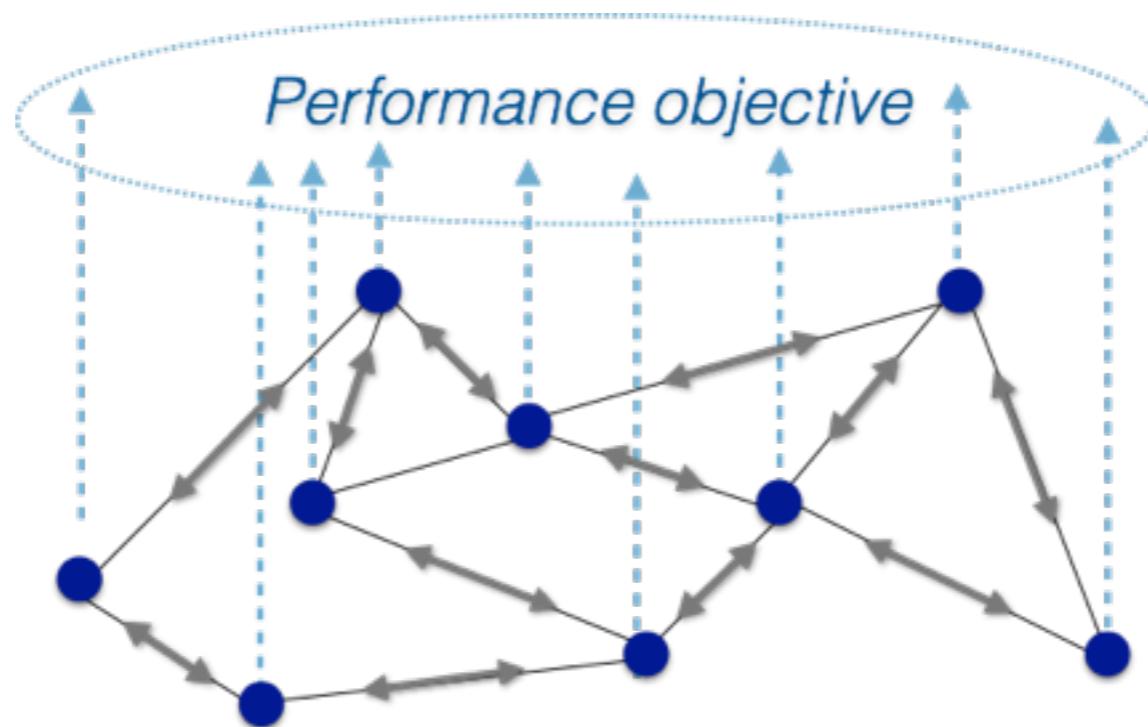


On performance limitations of large-scale networks with distributed feedback control

Emma Tegling
tegling@kth.se

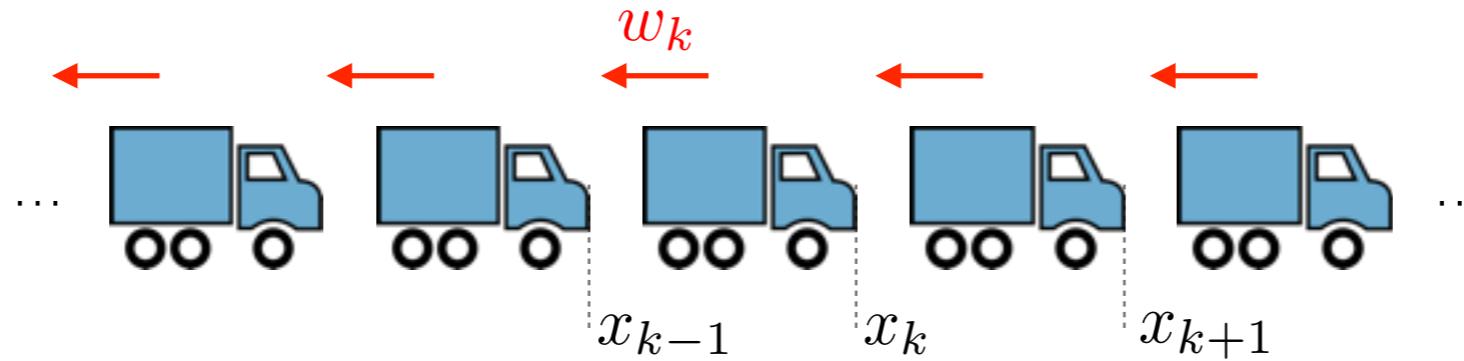
Licentiate thesis defence, Stockholm, 27 May 2016

Networked systems: *global* objectives, but *local* feedback



Are there limitations to network *performance*?

Example 1: Vehicle platoons can reduce emissions and increase road throughput



- Objectives:
 - common cruising speed
 - tight constant spacing Δ
- Dynamics (example): look-ahead, look-behind control

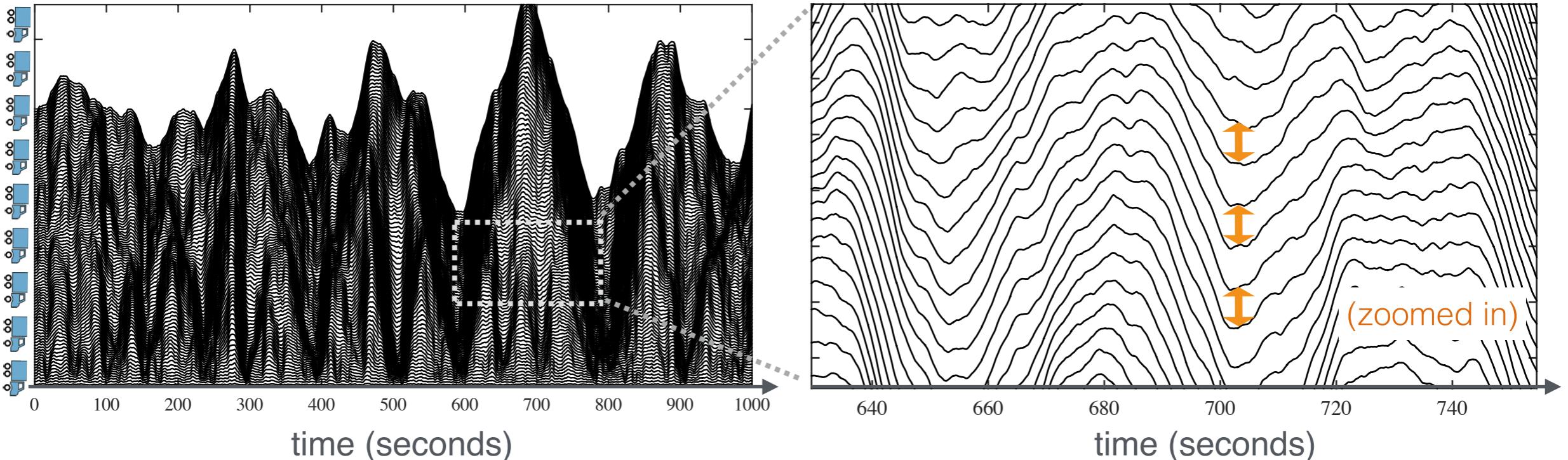
$$\ddot{x}_k = \dot{v}_k = f_+(x_{k+1} - x_k - \Delta) + f_-(x_{k-1} - x_k - \Delta) + g_+(v_{k+1} - v_k) + g_-(v_{k-1} - v_k) + w_k$$

(f_+, f_-, g_+, g_- constant gains)

- With disturbances: objectives only achieved approximately
- What happens if the platoon grows?

Example 1: Performance issues if control is based on *relative* measurements

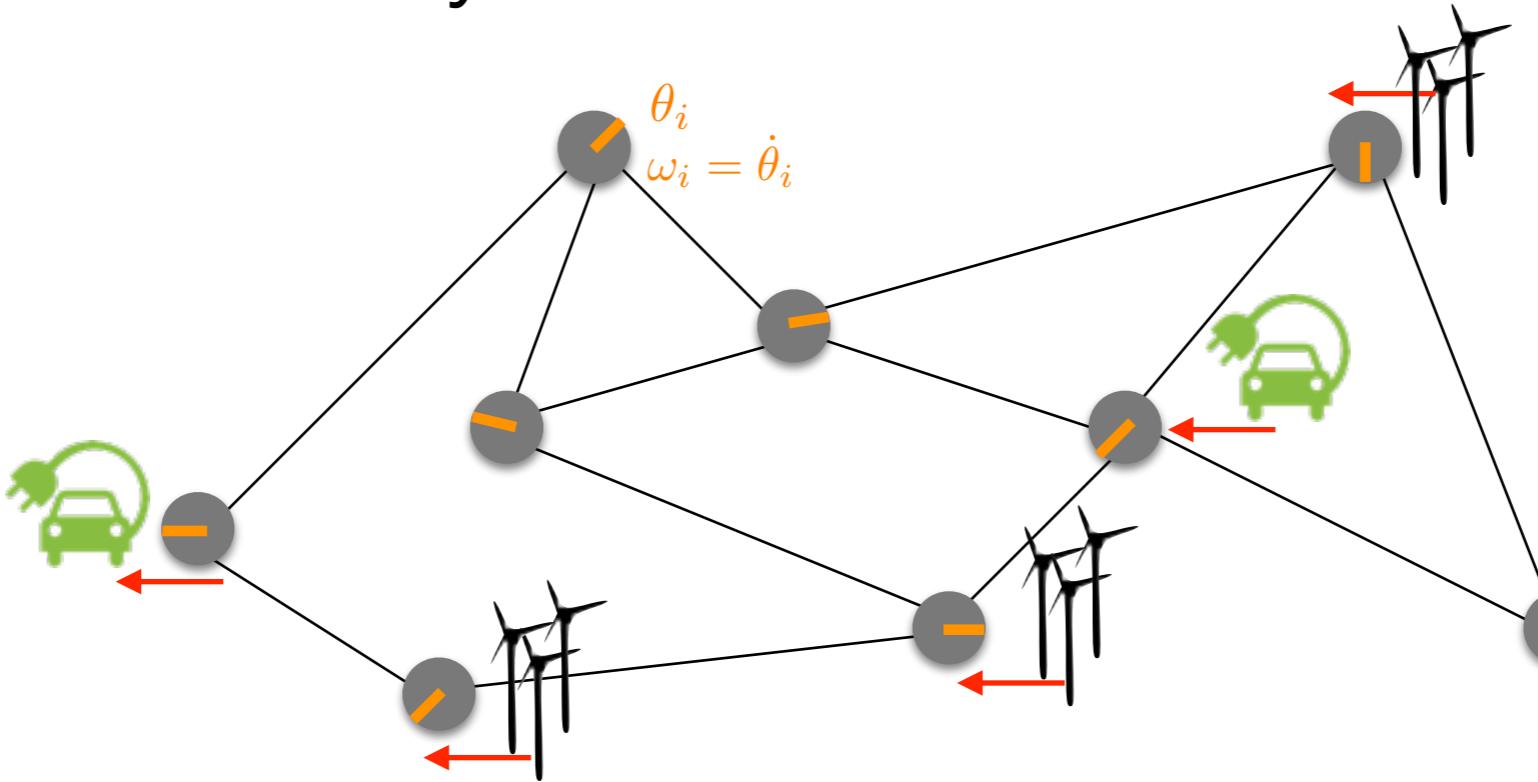
Time trajectories of 100 vehicles, relative to leader, seen from above



- Formation is stable
- Spacings \leftrightarrow are well-regulated (no collisions!)
- However - not a *rigid* formation, not *coherent*!
- Fundamental limitation to local, static feedback (Bamieh *et al.*, 2012)

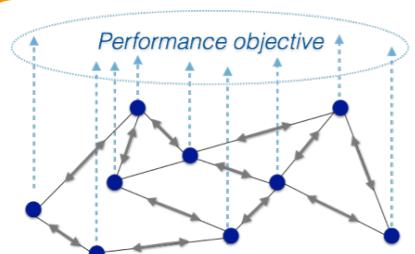
Can *dynamic* control laws help?

Example 2: Transition to a greener power system affects network synchronization



- Objectives:
 - common, steady frequency (50 Hz)
 - phase angles at equilibrium
- More disturbances due to
 - renewable, intermittent generation
 - changing load patterns
- Networks grow as generation becomes distributed

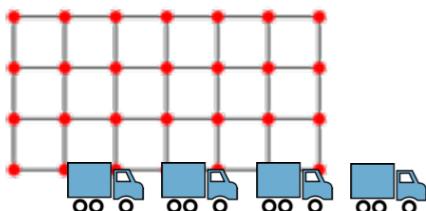
OUTLINE



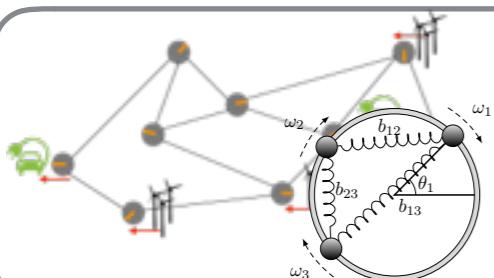
Introduction and problem formulation

\mathcal{H}^2

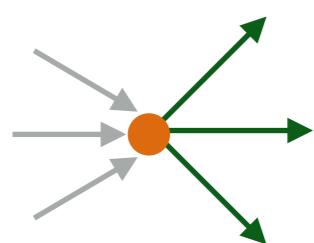
Evaluating input-output performance



Case 1: Regular lattice networks, coherence

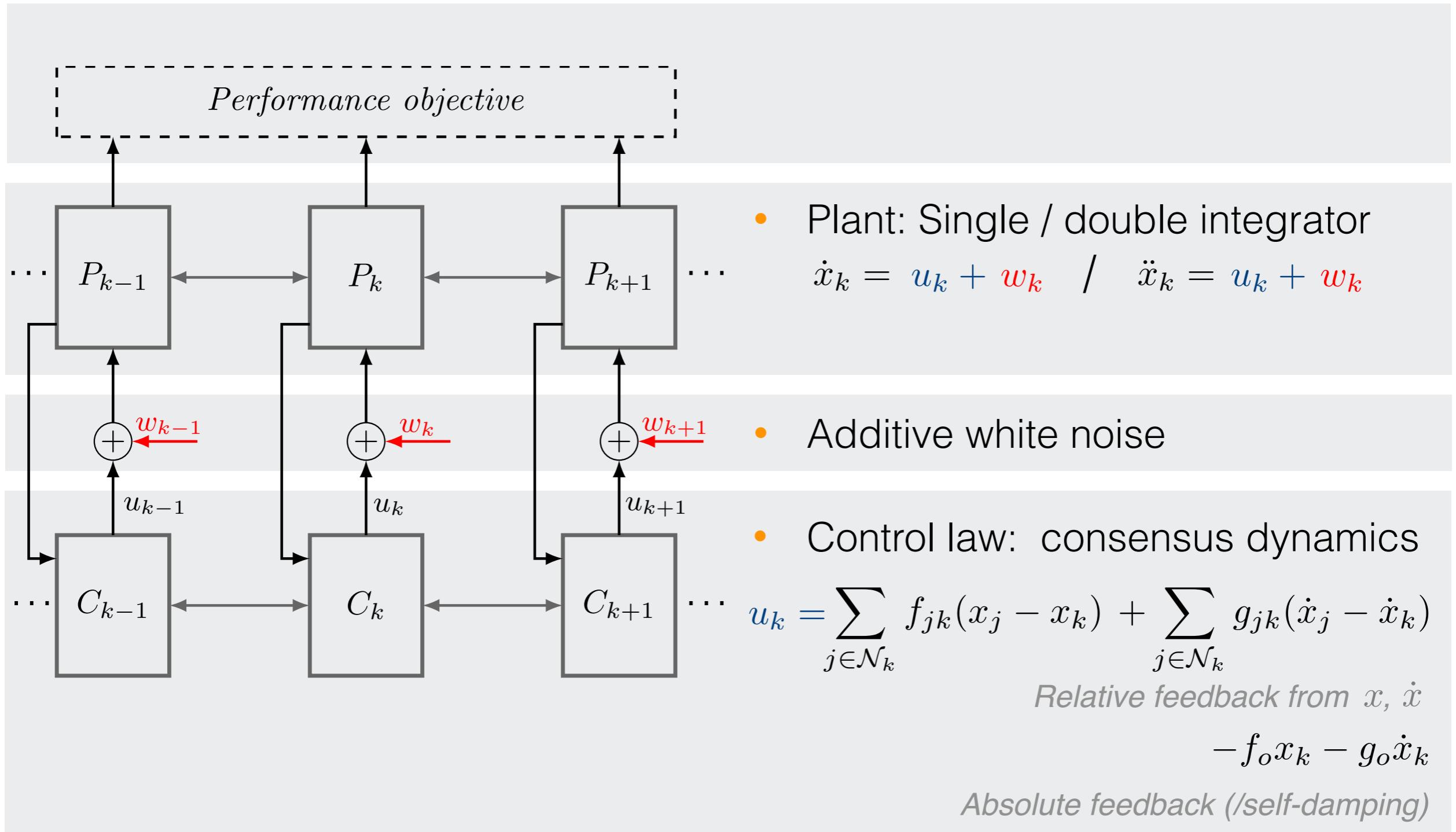


Case 2: Power networks, price of synchrony



Conclusions and future work

Setup: The distributed control problem



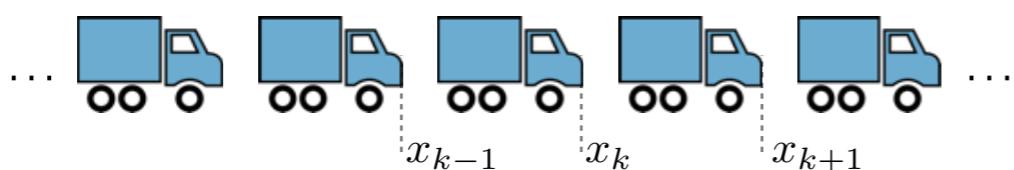
Setup: Performance is evaluated through global and local measures of “disorder”

Global error - *coherence*

- Deviation from network average

$$y_k^{dav} = x_k - \frac{1}{N} \sum_{j=1}^N x_j$$

- Characterizes rigidity, coherence

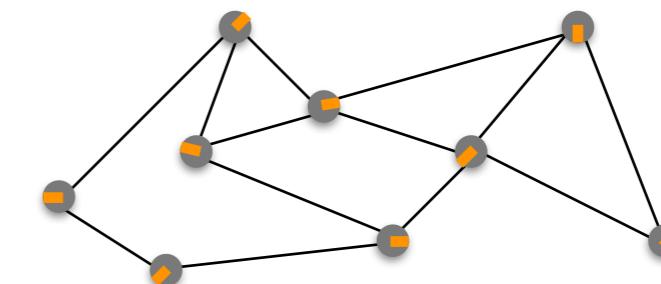


Local error - *lack of synchrony*

- Deviation from neighbor average

$$y_k^{loc} = \sum_{j \in \mathcal{N}_k} a_{j,k} (x_k - x_j)$$

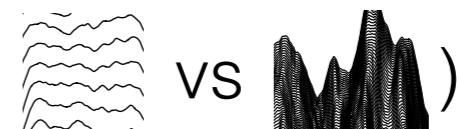
- Characterizes lack of local order, or synchrony



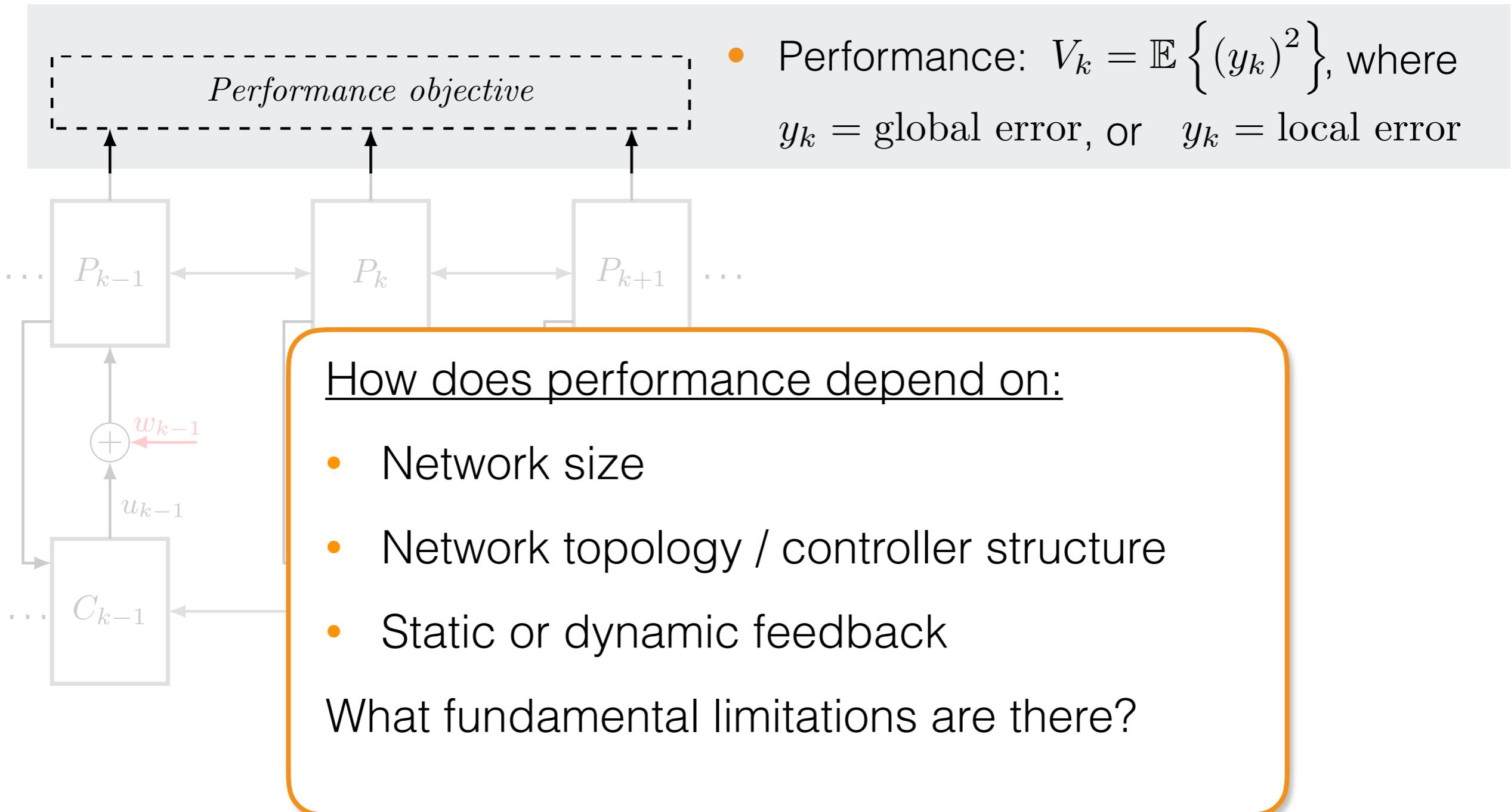
- Performance is measured through *variance*:

$$V_k = \mathbb{E} \left\{ (y_k)^2 \right\}$$

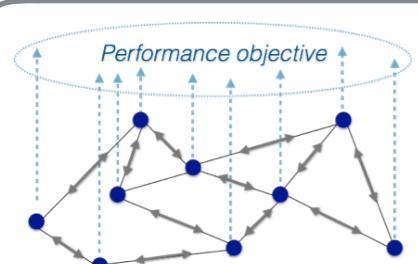
- Note! Two distinct performance measures (c.f.



Objective: characterize performance in large-scale networks



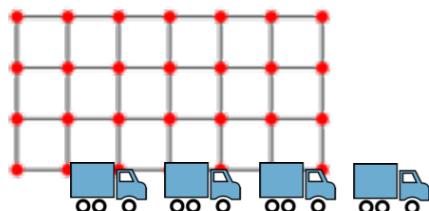
OUTLINE



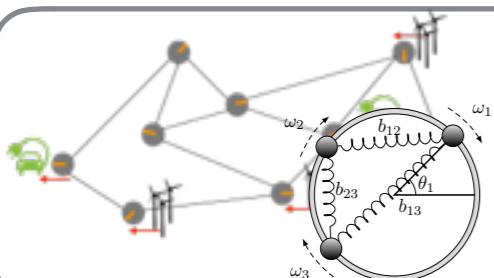
Introduction and problem formulation

H^2

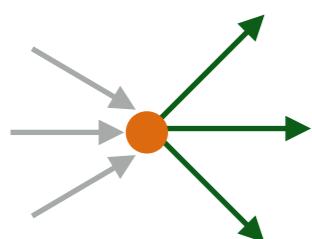
Evaluating input-output performance



Case 1: Regular lattice networks, coherence



Case 2: Power networks, price of synchrony



Conclusions and future work

Performance is evaluated through
input-output H_2 norms

Consider general linear system under white noise input

$$\begin{aligned}\dot{x} &= \mathcal{A}x + \mathcal{B}\mathbf{w} \\ \mathbf{y} &= \mathcal{C}x\end{aligned}\tag{1}$$

Recall:

Need to evaluate $V_k = \mathbb{E}\{(\mathbf{y}_k)^2\}$, with e.g. $\mathbf{y}_k = x_k - \frac{1}{N} \sum_{j=1}^N x_j$.

Lemma:

The squared H_2 norm of (1) from input \mathbf{w} to output \mathbf{y} gives

$$\|H\|_2^2 = \lim_{t \rightarrow \infty} \mathbb{E}\{\mathbf{y}^*(t)\mathbf{y}(t)\},$$

That is, the steady state output variance.

With the appropriate output, performance is given by H_2 norm!

Evaluating system performance amounts to evaluating H_2 norms!

Unitary transformation simplifies H_2 norm evaluation 1(2)

$$\hat{H} : \dot{\hat{x}} = \underbrace{\begin{bmatrix} \ddots & & \cdot & \cdot \\ \cdot & \ddots & \cdot & \cdot \\ \cdot & \cdot & \ddots & \cdot \\ \cdot & \cdot & \cdot & \ddots \end{bmatrix}}_{\hat{\mathcal{A}}_{N \times N}} \hat{x} + \underbrace{\begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}}_{\hat{\mathcal{B}}} \hat{w}$$

$$\hat{y} = \underbrace{\begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \ddots & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}}_{\hat{\mathcal{C}}} \hat{x}$$

$$\hat{H}_n : \dot{\hat{x}}_n = \hat{\mathcal{A}}_n \hat{x}_n + \hat{\mathcal{B}}_n \hat{w}_n$$

$$\hat{y}_n = \hat{\mathcal{C}}_n \hat{x}_n$$

- Unitary transformation does not change H_2 norm
- (Block-) diagonalize to obtain N decoupled subsystems \hat{H}_n
- H_2 norm is sum of subsystem norms:

$$\|H\|_2^2 = \|\hat{H}\|_2^2 = \sum_{n=1}^N \|\hat{H}_n\|_2^2$$

- Zero mode associated with *drift of average* makes $\hat{\mathcal{A}}_1$ non-Hurwitz.
- Mode *unobservable*, so $\|\hat{H}_1\|_2^2 = 0$.
- Only sum over remaining, stable, subsystems: $\|H\|_2^2 = \sum_{n=2}^N \|\hat{H}_n\|_2^2$

Unitary transformation simplifies H_2 norm evaluation 2(2)

H_2 norm evaluated as sum of subsystem norms: $\|H\|_2^2 = \sum_{n=2}^N \|\hat{H}_n\|_2^2$

- For n such that $\hat{\mathcal{A}}_n$ Hurwitz, $\|\hat{H}_n\|_2^2 = \text{tr} \left(\hat{\mathcal{B}}_n^* X_n \hat{\mathcal{B}}_n \right)$, where

$$\hat{\mathcal{A}}_n^* X_n + X_n \hat{\mathcal{A}}_n = -\hat{\mathcal{C}}_n^* \hat{\mathcal{C}}_n. \quad (1)$$

Example:

Assume $\hat{\mathcal{A}} = -\text{diag}\{\lambda_n^{\mathcal{A}}\}$, then $\hat{\mathcal{A}}_n = -\lambda_n^{\mathcal{A}}$ is scalar. Here, $\hat{\mathcal{B}}_n = 1$.

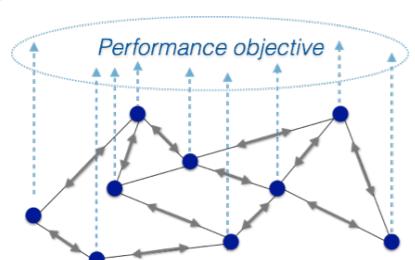
Then (1) gives

$$\|\hat{H}_n\|_2^2 = X_n = \frac{\hat{c}_n^2}{2\lambda_n^{\mathcal{A}}} \quad \begin{matrix} \nearrow = 1 \text{ in Part 1} \\ \searrow \text{Eigenvalue of } \mathcal{A}! \end{matrix}$$

$$\text{so } \|H\|_2^2 = \frac{1}{2} \sum_{n=2}^N \frac{\hat{c}_n^2}{\lambda_n^{\mathcal{A}}}.$$

H_2 norms involve sums over inverted eigenvalues, $\sum_{n=2}^N \frac{1}{\lambda_n^{\mathcal{A}}}$!

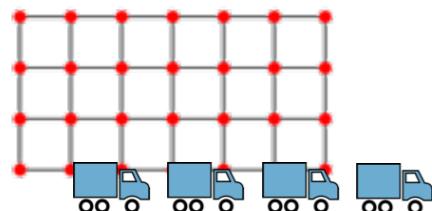
OUTLINE



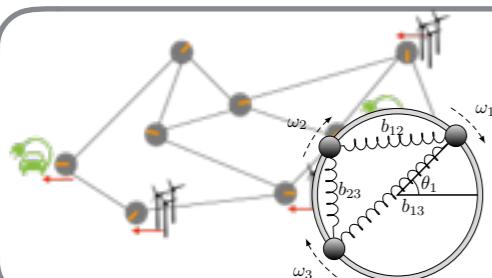
Introduction and problem formulation

H^2

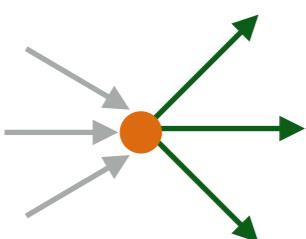
Evaluating input-output performance



Case 1: Regular lattice networks, coherence



Case 2: Power networks, price of synchrony



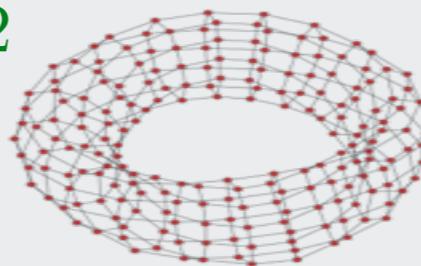
Conclusions and future work

Consensus and vehicular formation problems modeled over toric lattices

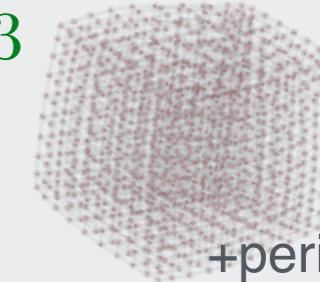
- Network: d -dimensional discrete torus \mathbb{Z}_N^d . Network size: $M = N^d$.

$$d = 1$$

$$d = 2$$



$$d = 3$$



+periodicity

- Dynamics: - Consensus (1st order) $\dot{x}_k = u_k + w_k$
- - Vehicular formations (2nd order) $\ddot{x}_k = \dot{v}_k = u_k + w_k$

- Control: Standard, static feedback

- Consensus:

$$u_k = (Fx)_k$$

$$\dot{x} = Fx + w$$

- Vehicular formations:

$$u_k = (Fx)_k + (Gv)_k$$

⚠ Only feedback from *local* neighborhood!

$$\begin{bmatrix} \dot{x} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} 0 & I \\ F & G \end{bmatrix} \begin{bmatrix} x \\ v \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} w$$

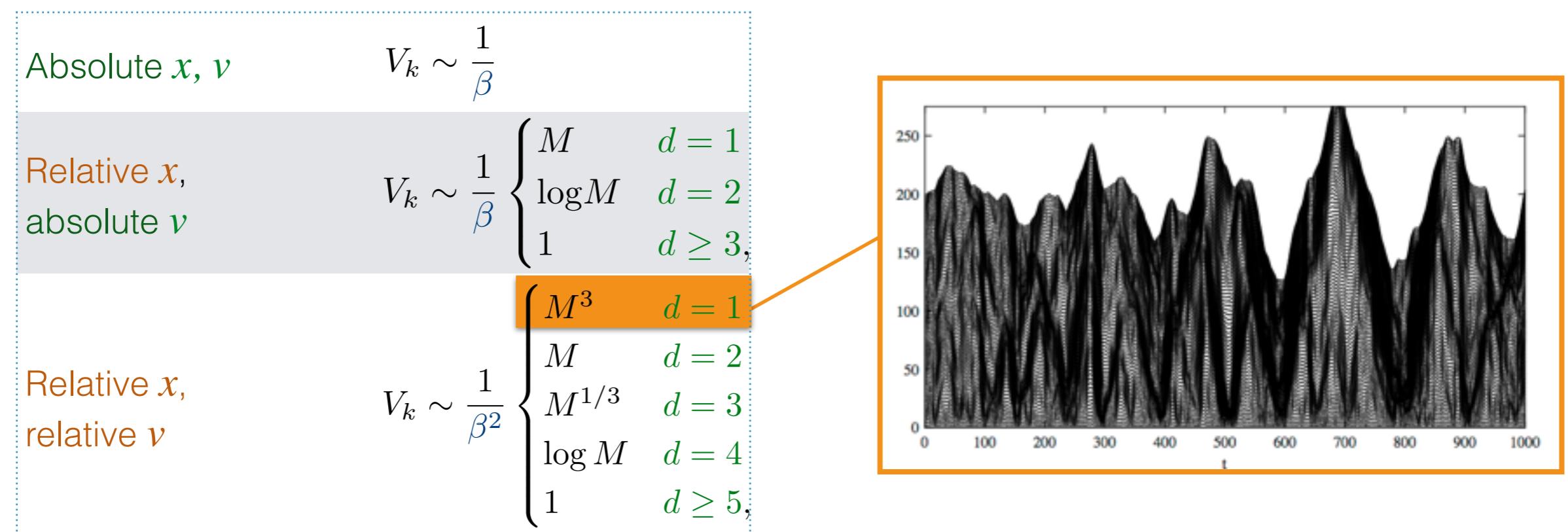
(F, G look like graph Laplacians!)

With static feedback: performance scales badly in low lattice dimensions

- Study *asymptotic* scaling of the variance $V_k = \text{var}(x_k - \frac{1}{M} \sum_{j=1}^M x_j)$
- The better V_k scales, the more *coherent* the system
- *Fully* coherent if V_k does not grow as network size $M \rightarrow \infty$

Asymptotic scalings with *static* feedback (Bamieh et al., 2012)

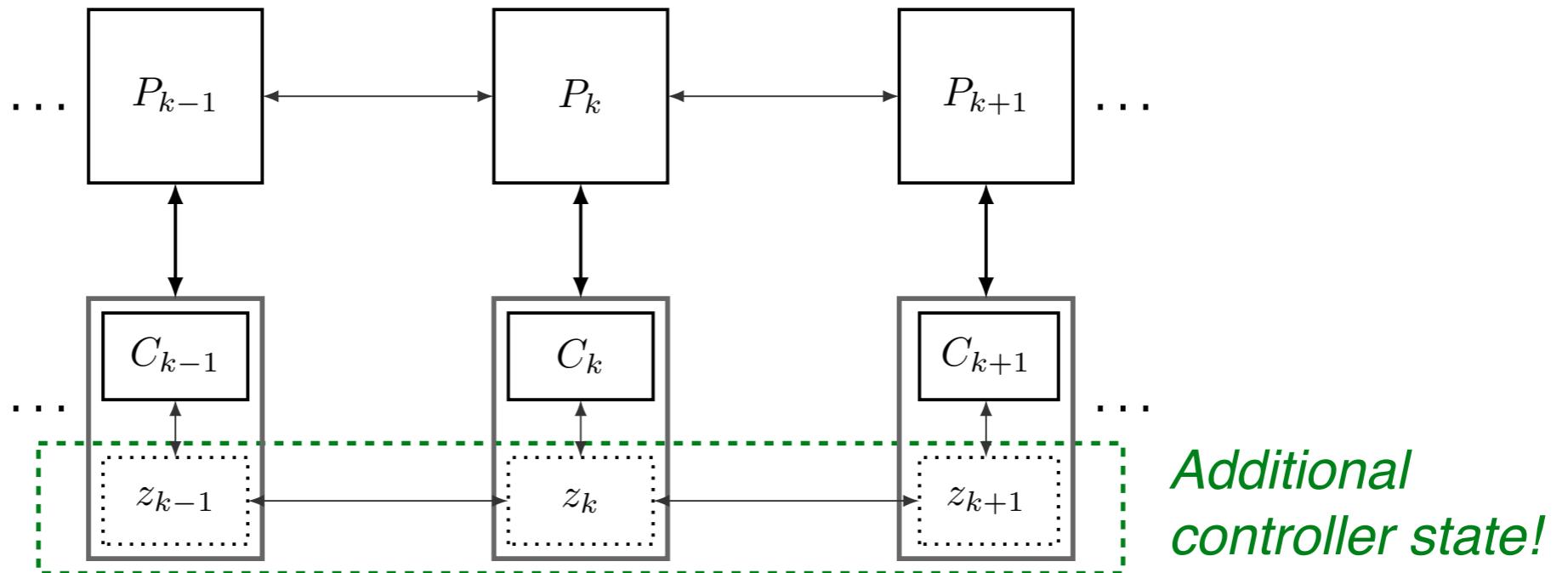
Up to a constant independent of gain parameter β and network size M



$$u_k = f_+(x_{k+1} - x_k) + f_-(x_{k-1} - x_k) + g_+(v_{k+1} - v_k) + g_-(v_{k-1} - v_k) + f_o x_k + g_o v_k$$

Relative feedback from x
Relative feedback from v
Absolute feedback

Introducing distributed *dynamic* feedback: control with memory



- Proposed control: General dynamic feedback

- Consensus:

$$u_k = (Fx)_k + z_k$$

$$\dot{z}_k = (Az)_k + (Bx)_k$$

$$\begin{bmatrix} \dot{z} \\ \dot{x} \end{bmatrix} = \begin{bmatrix} A & B \\ I & F \end{bmatrix} \begin{bmatrix} z \\ x \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} w$$

- Vehicular formations:

$$u_k = (Fx)_k + (Gv)_k + z_k$$

$$\dot{z}_k = (Az)_k + (Bx)_k + (Cv)_k$$

$$\begin{bmatrix} \dot{z} \\ \dot{x} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} A & B & C \\ 0 & 0 & I \\ I & F & G \end{bmatrix} \begin{bmatrix} z \\ x \\ v \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ I \end{bmatrix} w$$

Bad performance scaling is caused by eigenvalues near zero

Example (Standard consensus, 1st order):

$$\dot{x} = Fx + w$$

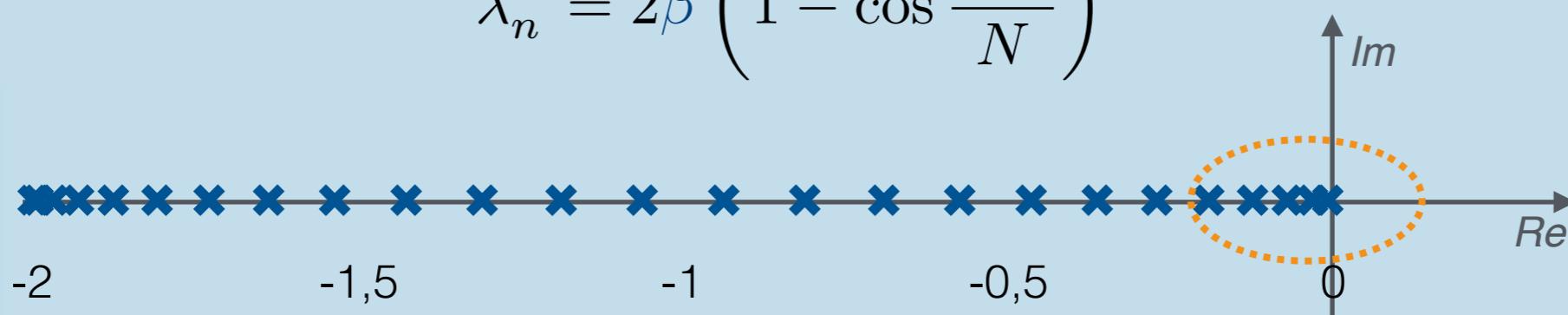
$$\dot{x}_k = \beta(x_{k+1} - x_k) + \beta(x_{k-1} - x_k) + w_k$$

Recall:

$$\|H\|_2^2 = \frac{1}{2} \sum_{n=2}^N \frac{1}{\lambda_n^F}$$

- Eigenvalues

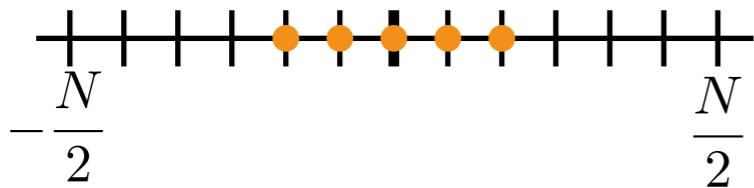
$$\lambda_n^F = 2\beta \left(1 - \cos \frac{2\pi n}{N} \right)$$



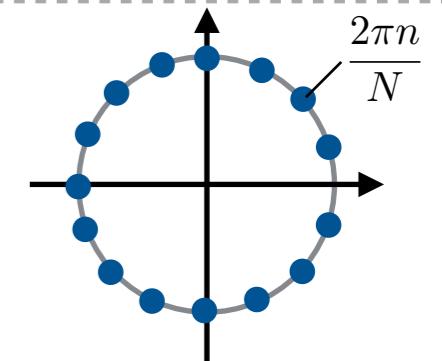
- As N grows: Arbitrarily many λ_n^F increasingly close to zero - sum blows up!

Evaluating performance in the limit from finite to infinite lattices

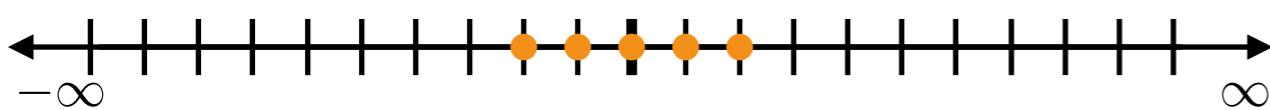
- Eigenvalues $\lambda_n^F \leftrightarrow$ Spatial discrete Fourier transforms



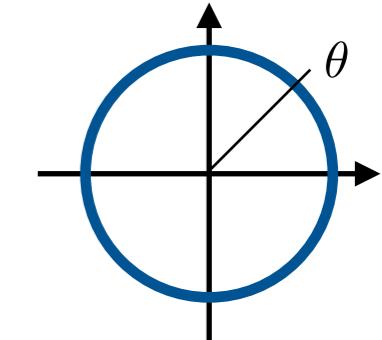
$$\hat{f}_n := \sum_{k \in \mathbb{Z}_N^d} f_k e^{-j \frac{2\pi}{N} n \cdot k}$$



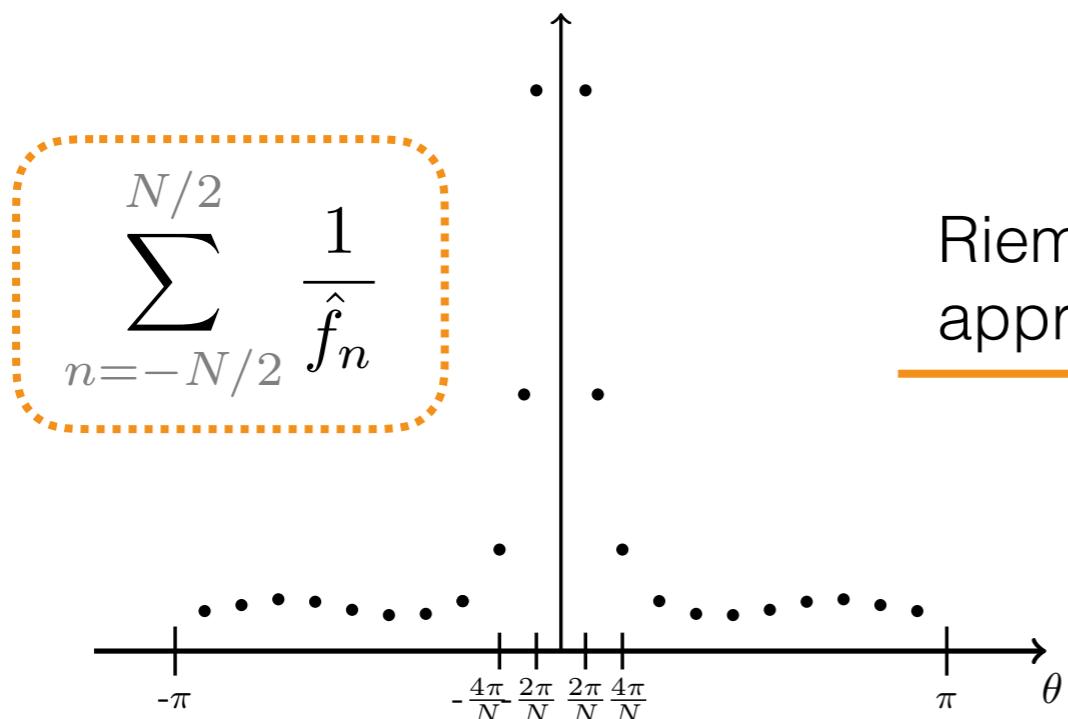
- \leftrightarrow Z-transforms in limit of infinite lattice



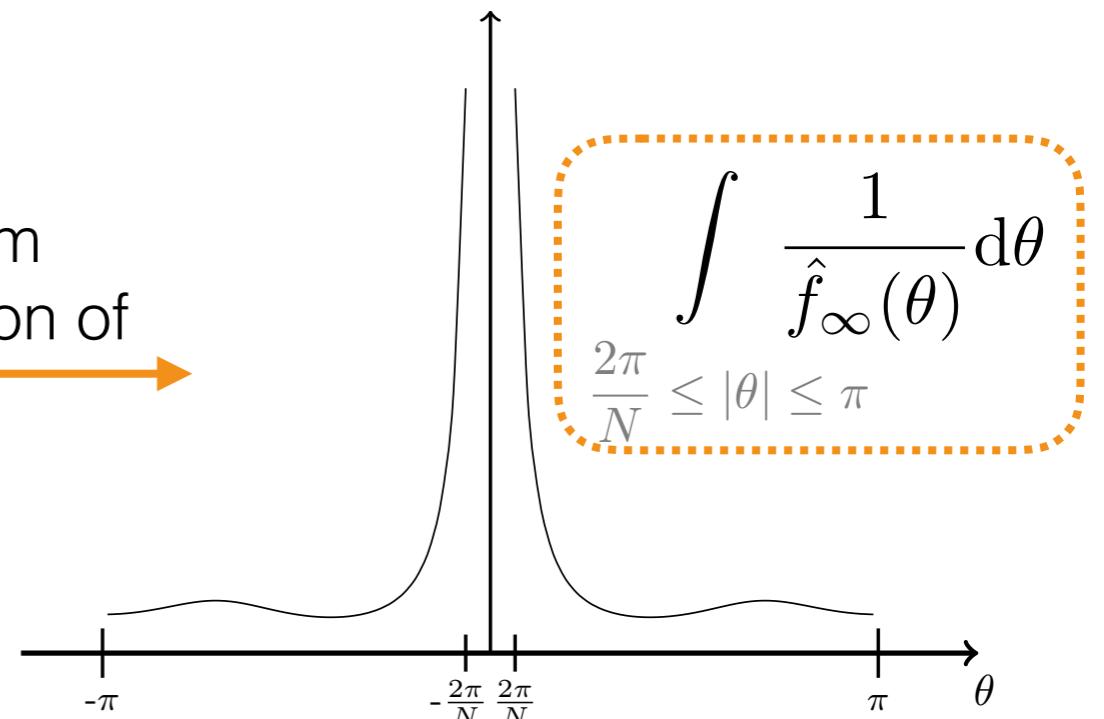
$$\hat{f}_\infty(\theta) := \sum_{k \in \mathbb{Z}^d} f_k e^{-j \theta \cdot k}$$



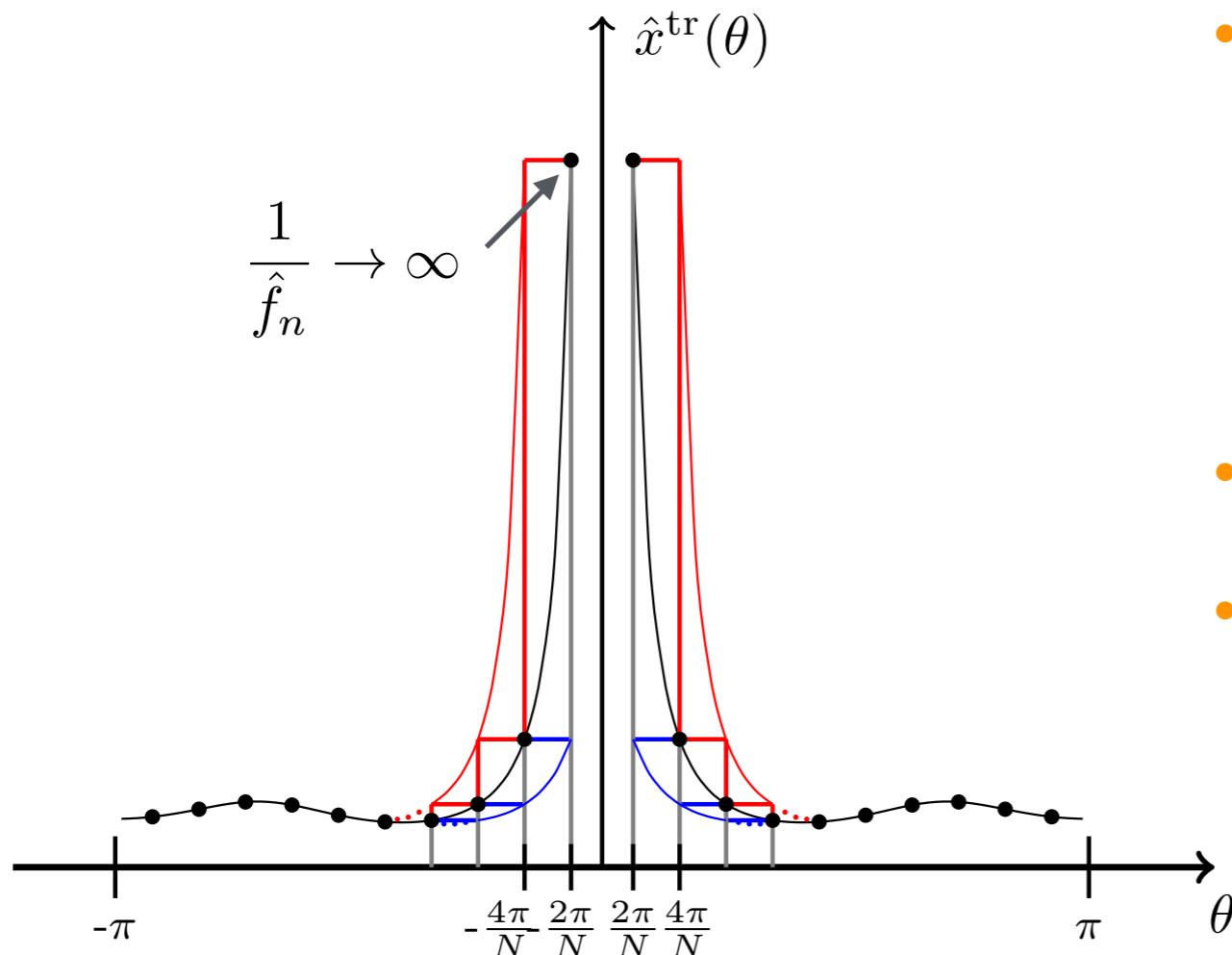
- H_2 norm can be estimated using integral



Riemann sum approximation of



Asymptotic performance scaling is determined by *how fast* function “blows up”



- Sum estimated through integral like
$$\int_{\frac{2\pi}{N} \leq |\theta| \leq \pi} \frac{1}{\hat{f}_\infty(\theta)} d\theta$$

$$\hat{x}^{\text{tr}}(\theta)$$
- Typically, singularity at zero
- Order of singularity p determines asymptotic scaling of H_2 norm

Lemma

If $\hat{x}^{\text{tr}}(\theta) \sim \frac{1}{|\beta\theta|^p}$, then

$$V_k \sim \frac{1}{\beta^{p/2}} \begin{cases} N^{p-d} & \text{if } d < p \\ \log N & \text{if } d = p \\ 1 & \text{if } d > p \end{cases}$$

(Notation $u(x) \sim v(x)$ means $u(x)/v(x)$ uniformly bounded)

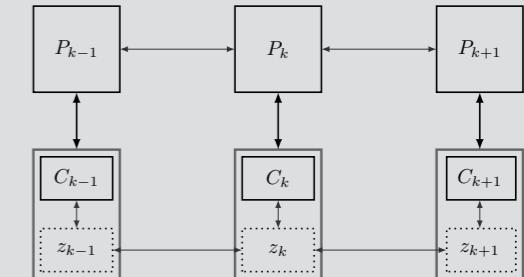
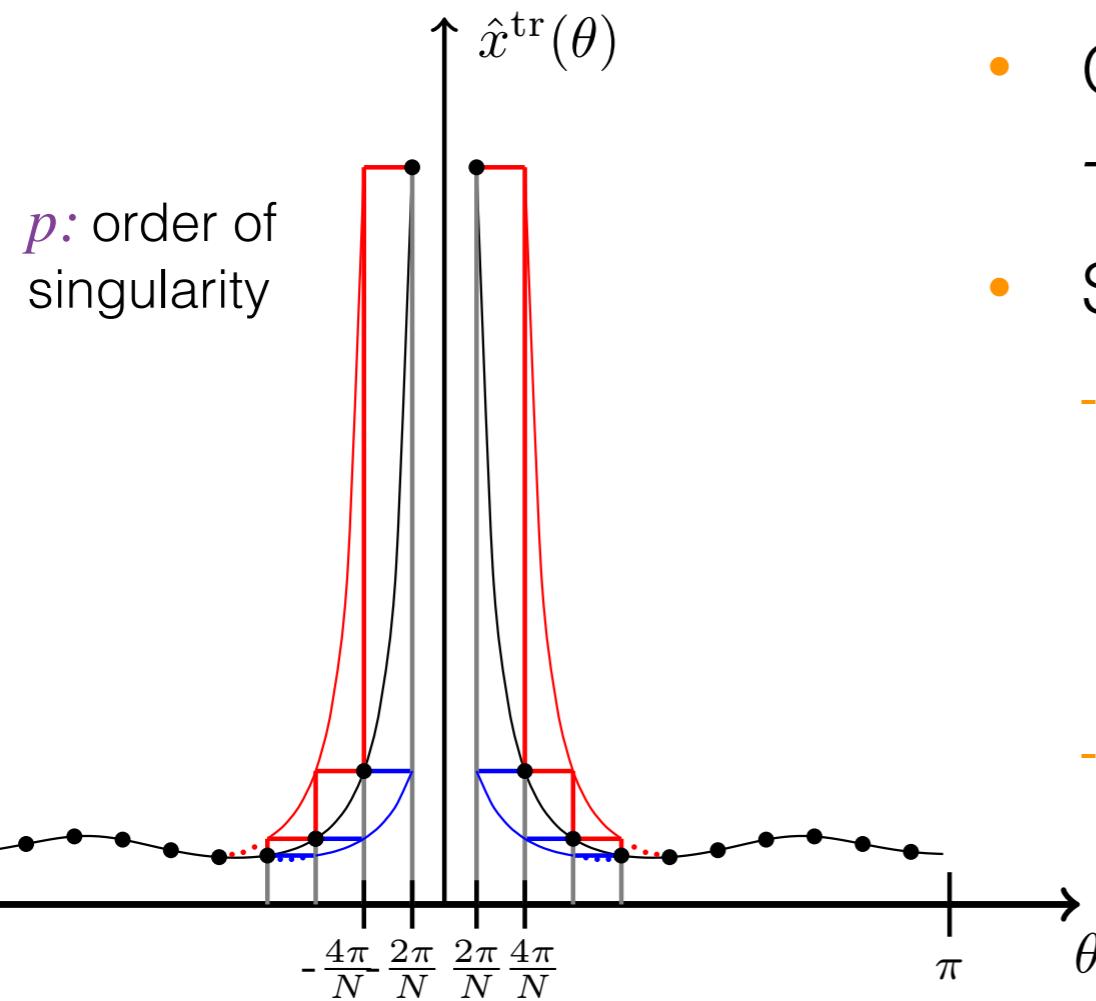
Dynamic feedback does *not* change scaling

- if feedback is *relative*

Recall: dynamic feedback laws

$$\begin{bmatrix} \dot{z} \\ \dot{x} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} A & B \\ I & F \end{bmatrix} \begin{bmatrix} z \\ x \\ v \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} w$$

$$\begin{bmatrix} \dot{z} \\ \dot{x} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} A & B & C \\ 0 & 0 & I \\ I & F & G \end{bmatrix} \begin{bmatrix} z \\ x \\ v \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ I \end{bmatrix} w$$



- Only relative feedback from x, v
 - F, G, B, C all have zero eigenvalues!
- Scaling of integrand unchanged

- Consensus

$$\hat{x}^{tr}(\theta) = \frac{-1}{2\hat{f}(\theta) + 2\varphi^c(\theta)} \sim \frac{1}{|\beta\theta|^2} \quad p = 2$$

From dynamic feedback

- Vehicular formations

$$\hat{x}^{tr}(\theta) = \frac{d}{2\hat{f}(\theta)\hat{g}(\theta) + 2\varphi^v(\theta)} \sim \frac{1}{|\beta\theta|^4} \quad p = 4$$

From dynamic feedback

Performance improves if absolute feedback available

Asymptotic performance scalings for the vehicular formation problem:

	Static feedback	Dynamic feedback	
Absolute x, v	$V_k \sim \frac{1}{\beta}$		Same!
Relative x , absolute v	$V_k \sim \frac{1}{\beta} \begin{cases} M & d = 1 \\ \log M & d = 2 \\ 1 & d \geq 3, \end{cases}$	$V_k \sim \frac{1}{\beta}$ <i>Assuming noiseless measurements!</i>	Improved performance!
Relative x , relative v	$V_k \sim \frac{1}{\beta^2} \begin{cases} M^3 & d = 1 \\ M & d = 2 \\ M^{1/3} & d = 3 \\ \log M & d = 4 \\ 1 & d \geq 5, \end{cases}$		Same!

- Dynamic feedback with absolute velocities substitute absolute positions: *improves performance!*

$$u_k = \text{relative feedback} - g_o v_k + z_k$$

$$\dot{z}_k = a_+ (z_{k+1} - z_k) + a_- (z_{k-1} - z_k) - c_o v_k$$

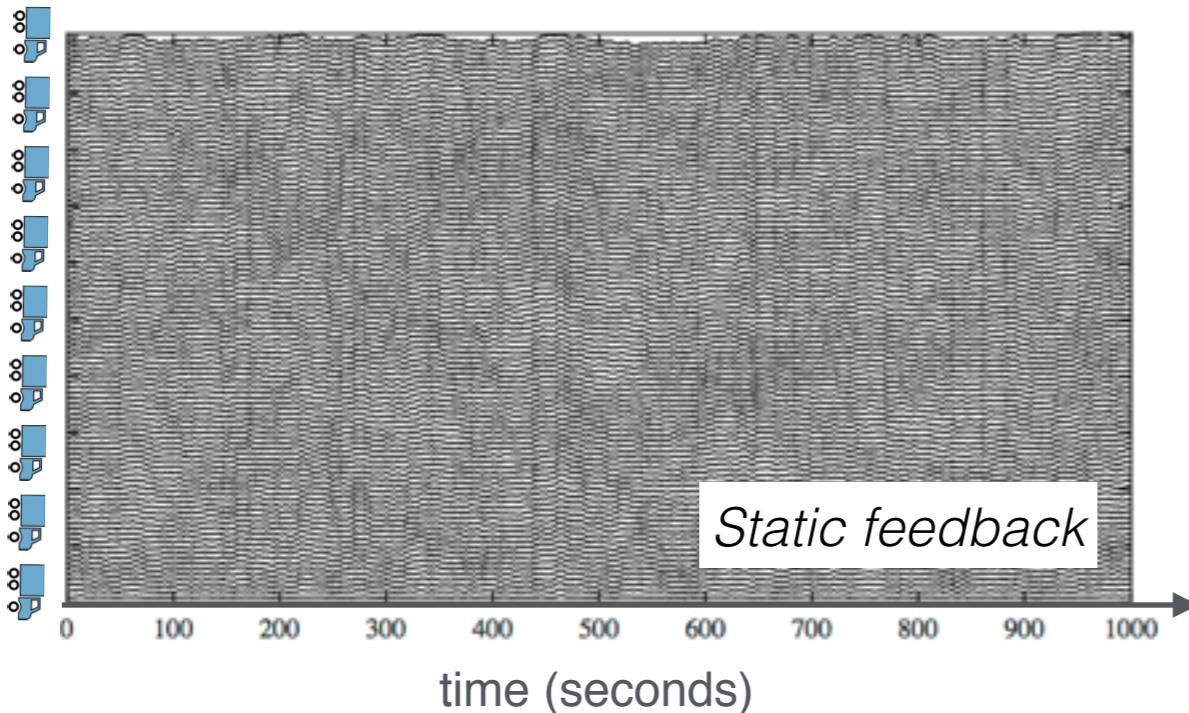
Distributed averaging of z

Distributed averaging

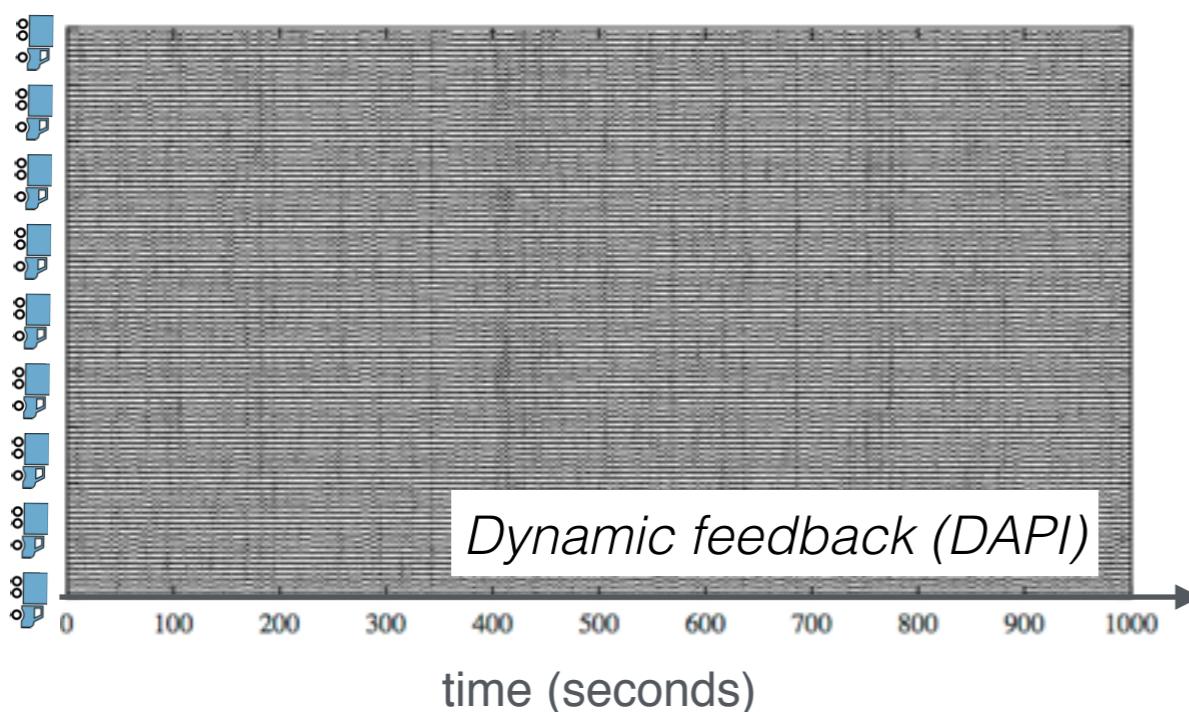
PI control (DAPI)

- With noisy measurements - distributed averaging of memory states needed

DAPI improves performance if absolute velocity measurements are available

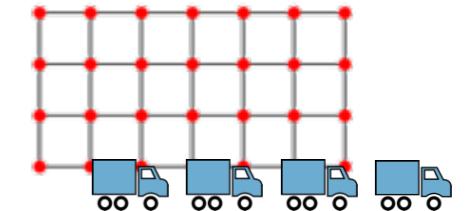


- With noise: cannot achieve full coherence
- Still, performance improvement if noise small
- Useful if speedometers available, but absolute position unknown
- Same feedback situation as in power networks (Part 2)!



*Time trajectories in 100 vehicle platoon w.r.t. leader
(page 51 in thesis!)*

Summary: Regular lattice networks, coherence



- Objective: Can dynamic feedback improve coherence of consensus and vehicular formation systems?
- Analyze using spatial Fourier transforms, in limit of infinite lattice
- No improvement with only *relative* state feedback
- Distributed PI control improves performance if *absolute* velocity feedback available

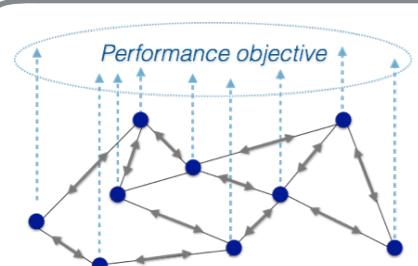
More in the thesis:

- Criteria for stability with dynamic feedback

See also:

E. Tegling, P. Mitra, H. Sandberg, B. Bamieh: Coherence and stability in large-scale networks with distributed dynamic feedback. *In prep.* To be presented at *MTNS*, Minneapolis, Jul 2016.

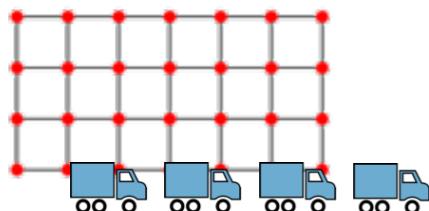
OUTLINE



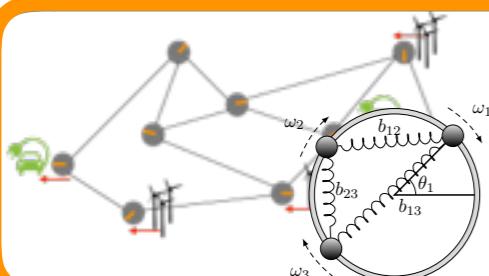
Introduction and problem formulation

H^2

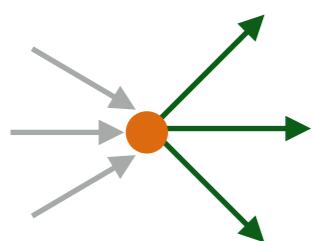
Evaluating input-output performance



Case 1: Regular lattice networks, coherence

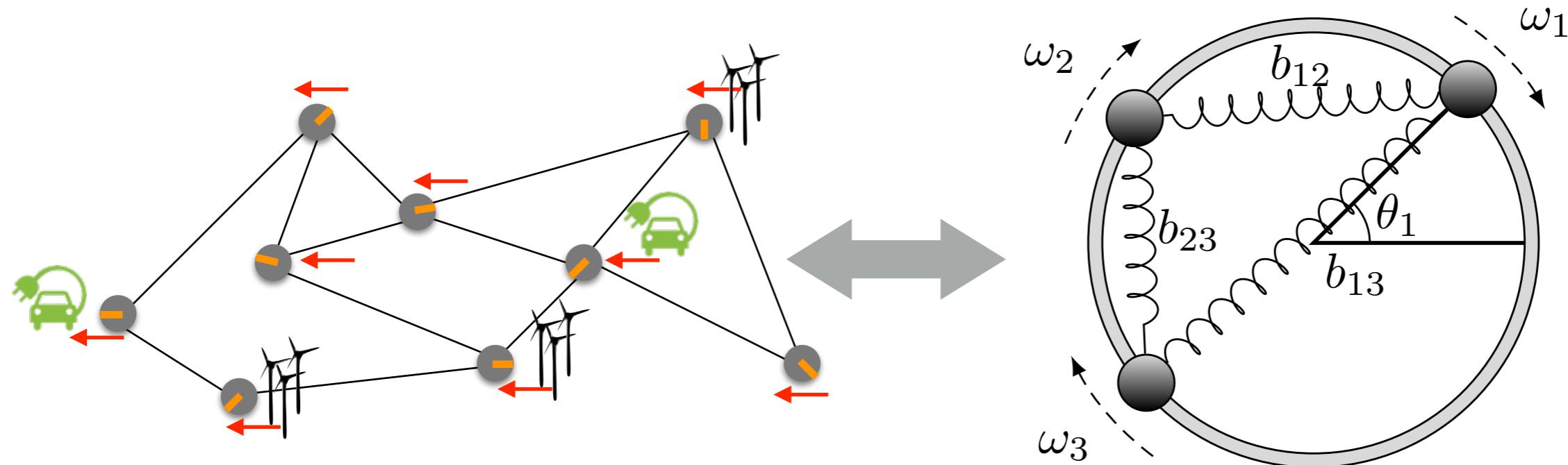


Case 2: Power networks, price of synchrony



Conclusions and future work

Lack of synchrony causes power losses - measure of performance



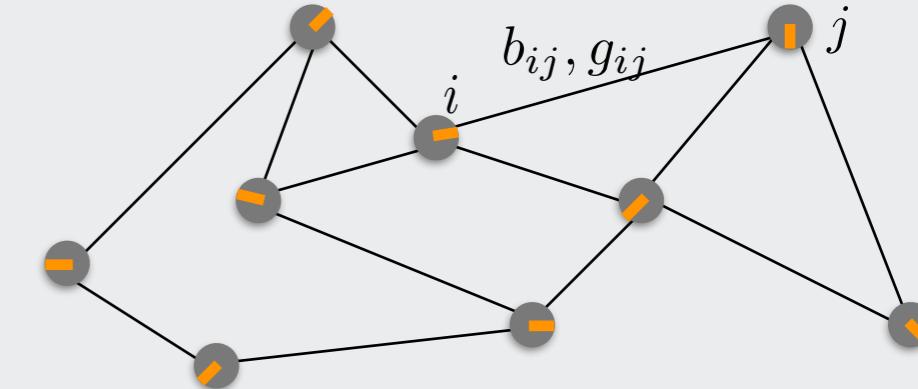
Analogy due to F. Dörfler et al.

Performance measure: cost of maintaining synchrony

- Assume stable operating conditions
- Assume distributed stochastic disturbances
- Quantify power losses during re-synchronization
- A *local* performance measure

Power network is modeled through coupled swing equations

- Network: N -node graph representing AC power lines between generators.
- Weighted graph Laplacians L_B, L_G
 - Susceptance matrix L_B , weights b_{ij}
 - Conductance matrix L_G weights g_{ij}



- Swing equation:

$$m_i \ddot{\theta}_i + d_i \dot{\theta}_i = P_{m,i} - P_{e,i}$$

(θ_i phase angle, m_i inertia, d_i damping)

- Electric power flow: Power injection at node i

(\mathcal{N}_i neighbor set of node i , b_{ij} line susceptance)

$$P_{e,i} = \sum_{j \in \mathcal{N}_i} b_{ij} (\theta_i - \theta_j)$$

- System:

$$\begin{bmatrix} \dot{\theta} \\ \dot{\omega} \end{bmatrix} = \begin{bmatrix} 0 & I \\ -M^{-1}L_B & -M^{-1}D \end{bmatrix} \begin{bmatrix} \theta \\ \omega \end{bmatrix} + \begin{bmatrix} 0 \\ M^{-1} \end{bmatrix} \textcolor{red}{w}$$

Power losses measured through appropriate performance output

- Power loss over line i,j (Ohm's law, quadratic approximation):

$$P^{\text{loss}} \approx g_{ij}(\theta_i - \theta_j)^2 \quad (g_{ij} \text{ line conductance})$$

- Total losses over network:

$$\mathbf{P}^{\text{loss}} = \sum_{e_{ij} \in \mathcal{E}} g_{ij}(\theta_i - \theta_j)^2 = \theta^* L_G \theta$$

Recall: H_2 norm for general system under white noise input:

$$\|H\|_2^2 = \lim_{t \rightarrow \infty} \mathbb{E}\{\mathbf{y}^*(t)\mathbf{y}(t)\},$$

- Set performance output to:

$$\mathbf{y}(t) = L_G^{1/2} \theta(t)$$

Expected losses now given by the system's H_2 norm

Main result: Losses given by generalized graph Laplacian ratio

- Assume uniform generator damping $d_i = d$

Theorem

$$\|H\|_2^2 = \frac{1}{2d} \text{tr} \left(L_B^\dagger L_G \right)$$

This represents the expected power loss incurred in maintaining synchrony

- L_B conductance matrix
- L_G susceptance matrix
- d generator damping
- \dagger Moore-Penrose pseudo inverse

Special case: no topology dependence if network line ratios are equal

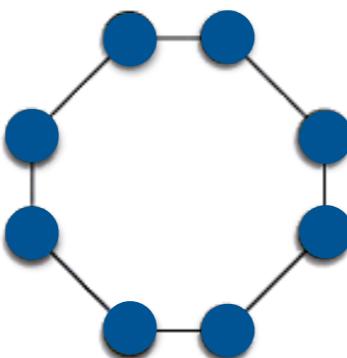
- Assume equal conductance-to-susceptance ratios: $\frac{g_{ij}}{b_{ij}} = \alpha$

Corollary

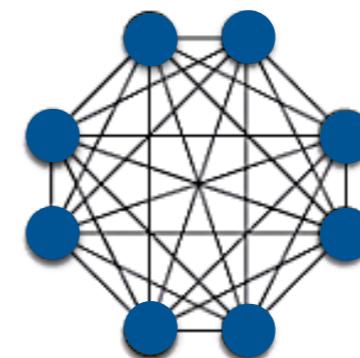
$$\|H\|_2^2 = \frac{\alpha}{2d}(N - 1)$$

N : number of generators

- Grows unboundedly with network size N
- Entirely independent of network topology!



vs.



Less “coherent”

<

More “coherent”

Larger phase fluctuations

>

Smaller phase fluctuations

Less links

<

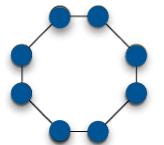
More links

Same transient power losses

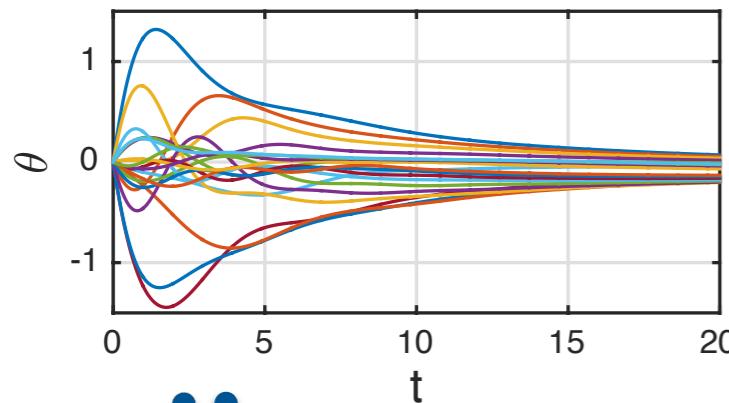
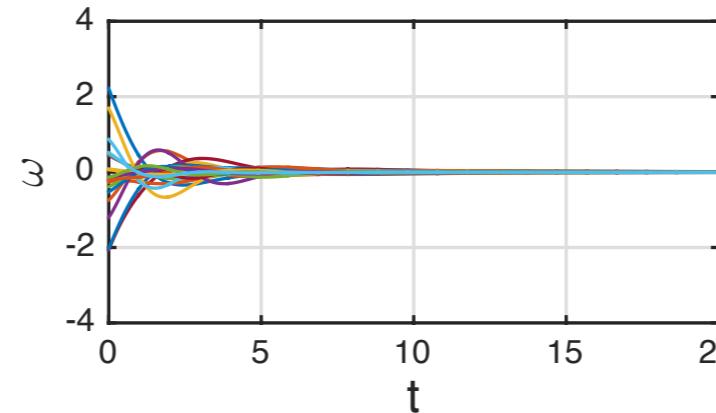
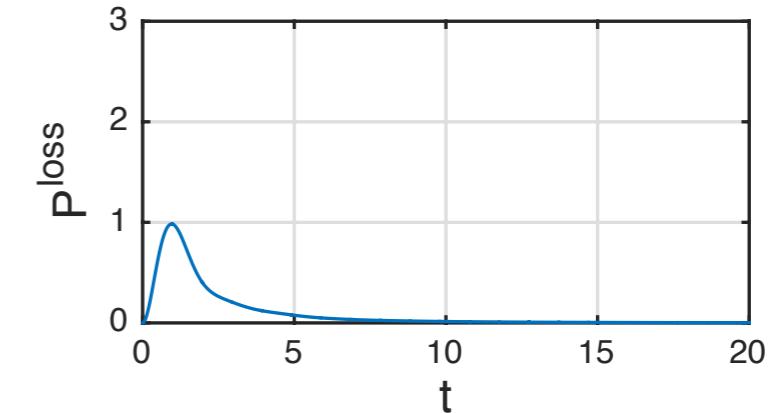
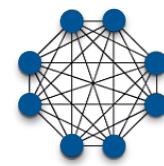
=

Same transient power losses

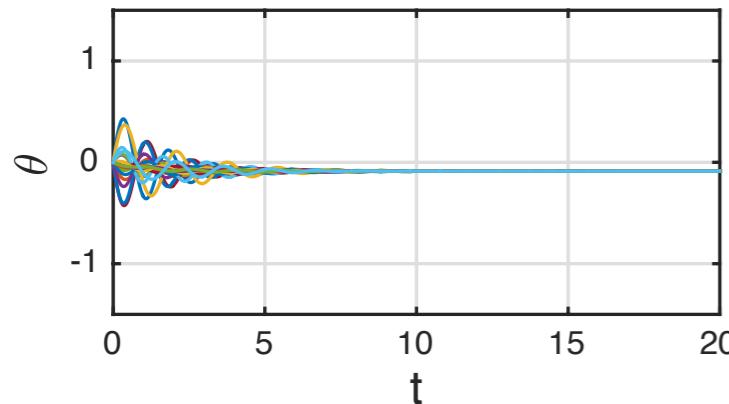
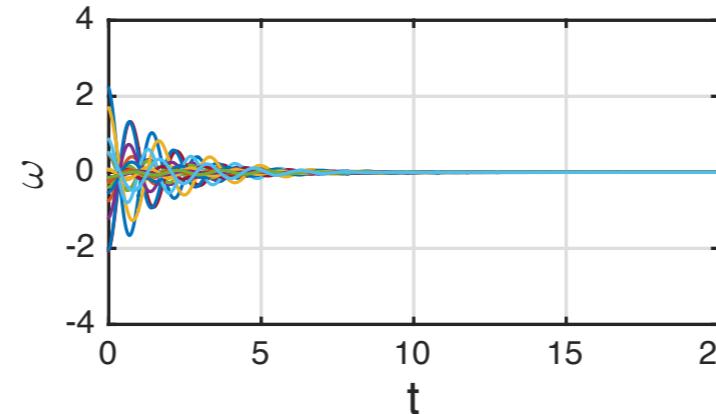
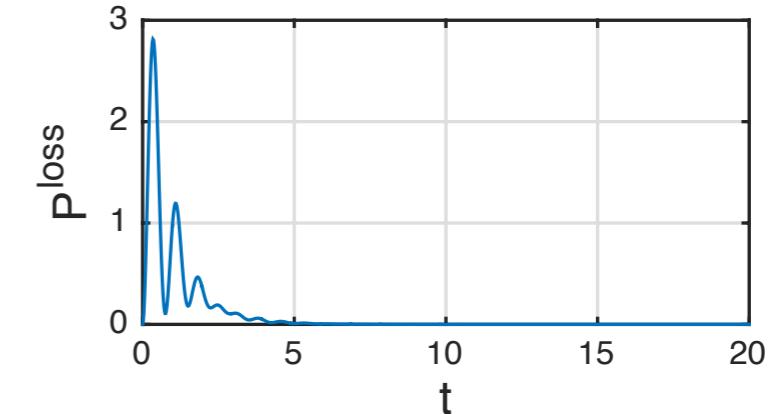
High connectivity gives faster synchronization,
but requires more power flows



Ring graph topology



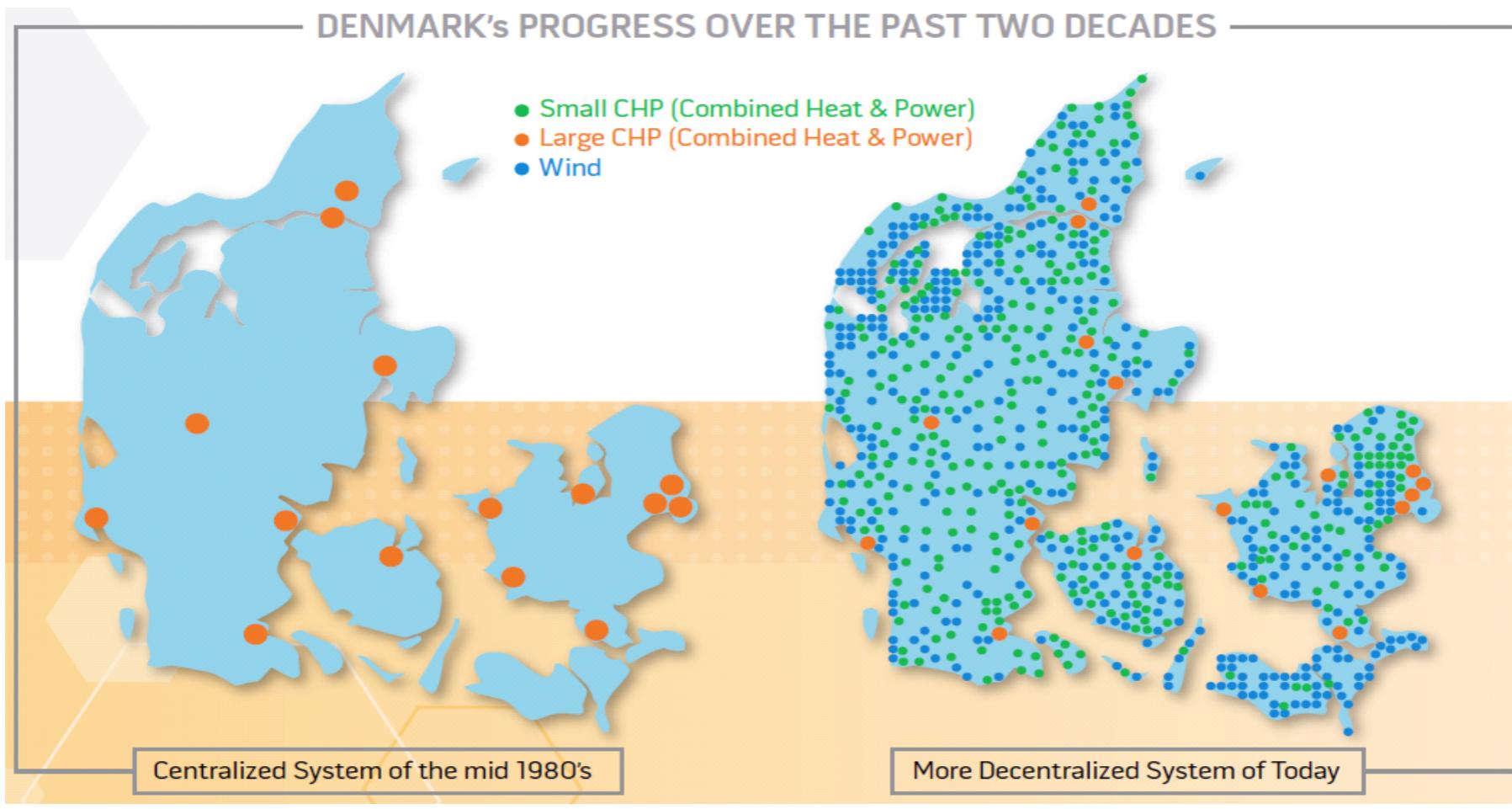
Complete graph topology



Synchronization transients in 20 node networks

- Faster synchronization and tighter phases in complete graph
- Same total losses over the transient

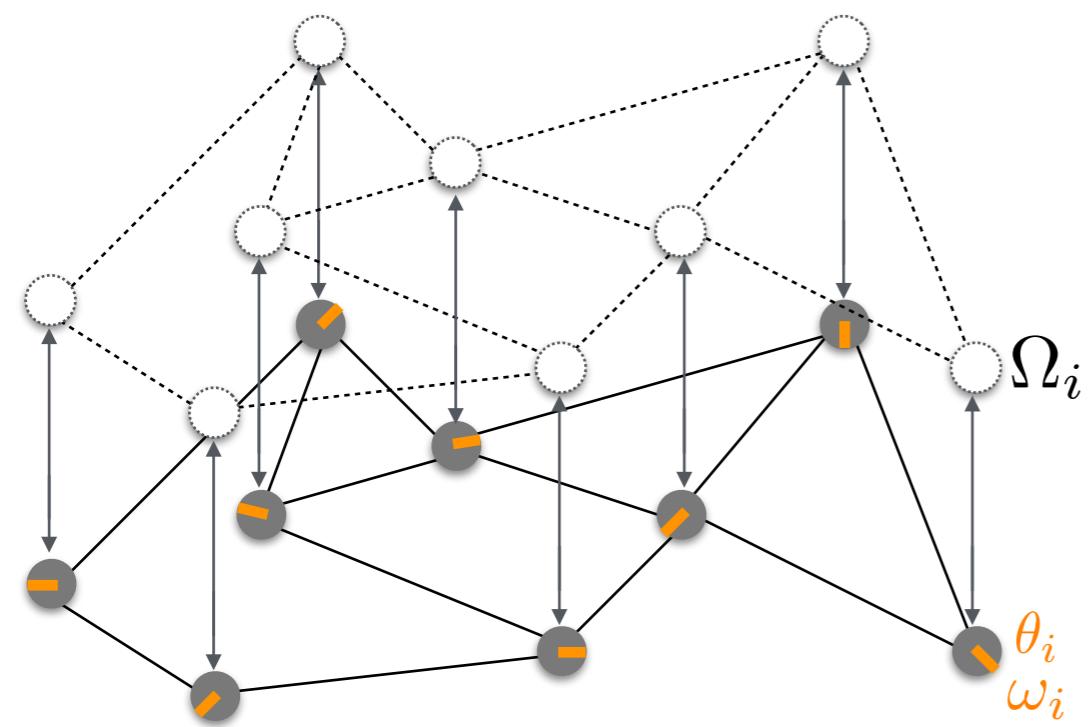
Implications: potential for large losses with distributed generation



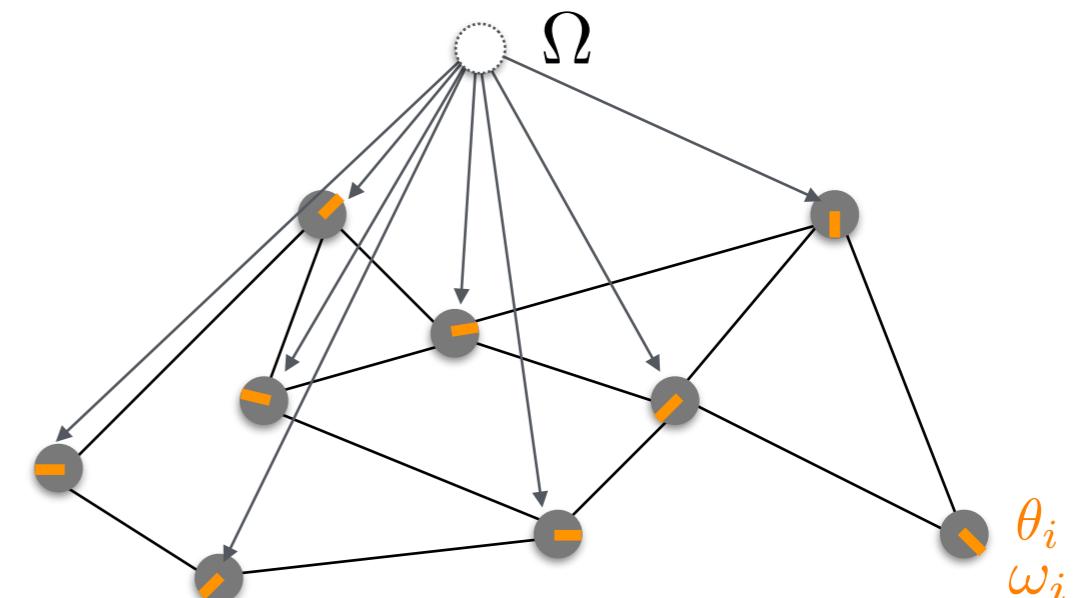
- Transient losses scale with network size
- No improvement by increasing number of links
- Fundamental limitation - if using *electric power flows* for synchronization

Can dynamic feedback improve performance?

Can dynamic feedback (PI control) improve performance?



○: Additional controller layer



Distributed averaging PI control (DAPI)

$$\dot{\omega}_i = [\text{swing equation}] + \Omega_i$$

$$q\dot{\Omega}_i = -\omega_i - \sum_{j \in \mathcal{N}_i^C} c_{ij}(\Omega_i - \Omega_j)$$

Distr. averaging of Ω

Centralized averaging PI control (CAPI)

$$\dot{\omega}_i = [\text{swing equation}] + \Omega$$

$$q\dot{\Omega} = -\frac{1}{N} \sum_{i \in \mathcal{V}} \omega_i$$

Centr. averaging of ω

(\mathcal{N}_i^C neighbor set of node i , c_{ij} constant gains, here $c_{ij} = \gamma b_{ij}$, q integral gain)

- Controllers proposed by Simpson-Porco *et al.* (2013), and Andreasson *et al.* (2014) for elimination of stationary control errors

CAPI leaves performance unchanged, while DAPI reduces losses

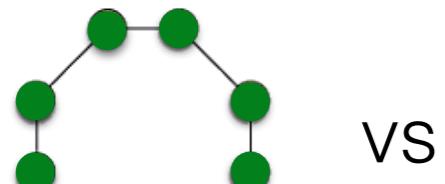
Theorem

$$\|H_{\text{CAPI}}\|_2^2 = \frac{\alpha}{2d}(N-1) > \|H_{\text{DAPI}}\|_2^2 = \frac{\alpha}{2d} \sum_{n=2}^N \frac{1}{1 + \frac{\gamma\tau\lambda_n + q}{\gamma\lambda_n(\gamma\tau\lambda_n + q) + q^2m\lambda_n}}$$

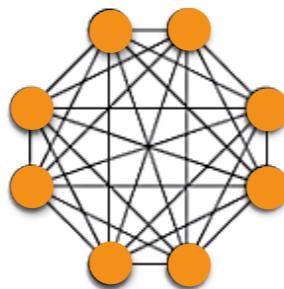
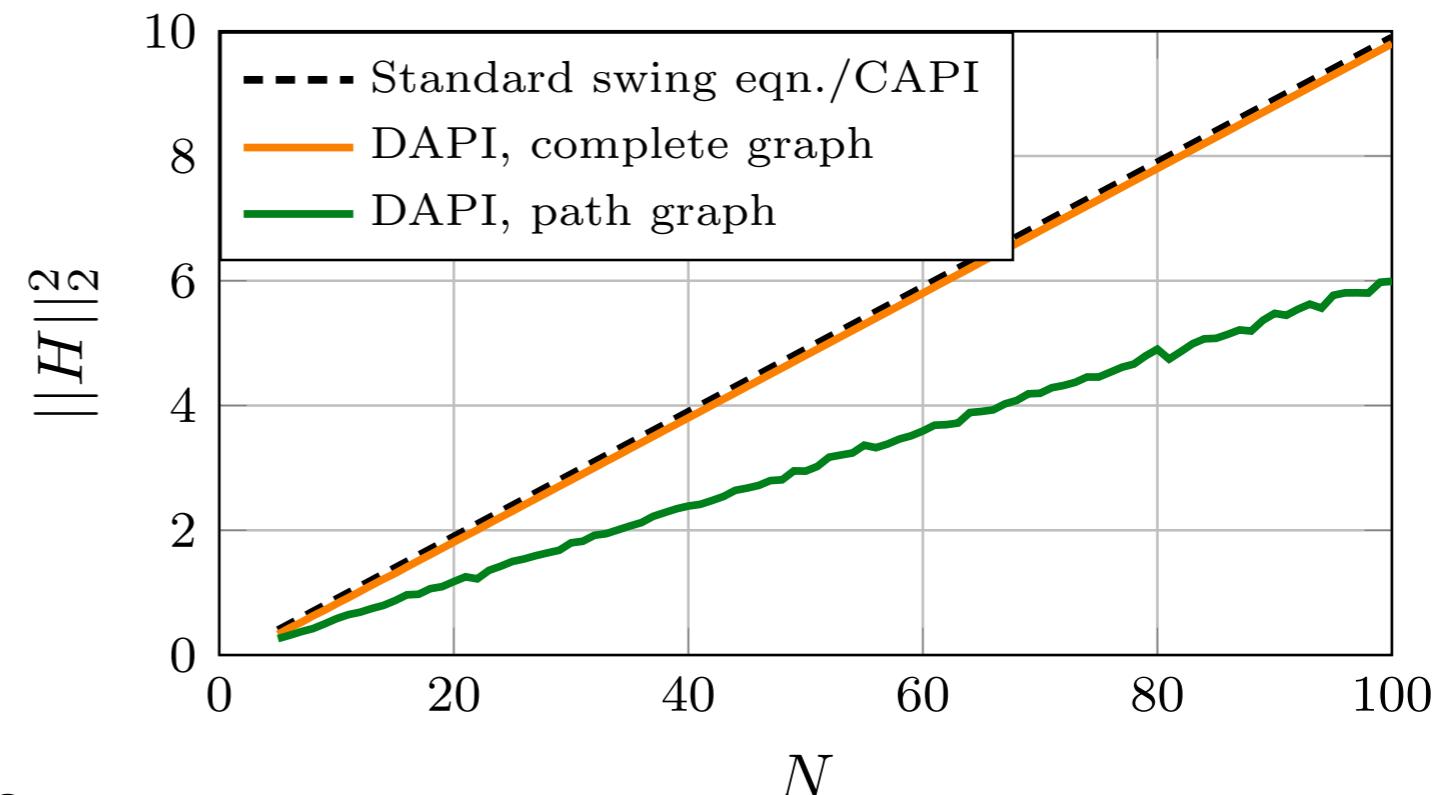
N-1 terms, each < 1

Same as before!

Topology dependent!

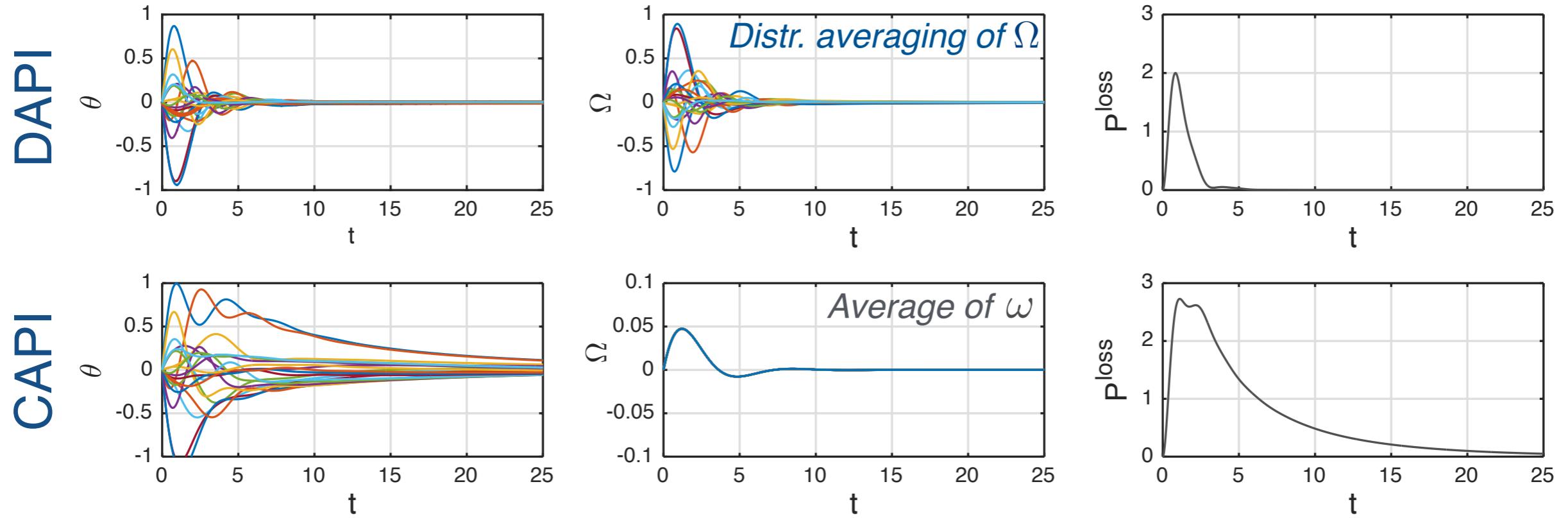


vs.



- DAPI control reduces losses
- Smaller losses for sparse topologies
- Losses still grow with network size N

Self-damping key to improved performance

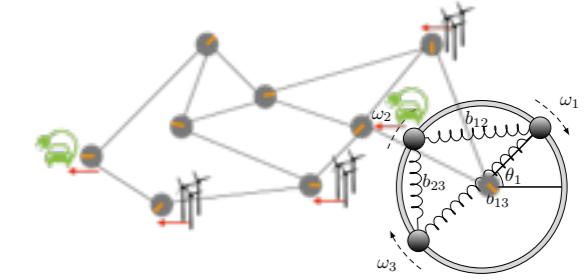


Synchronization transients in 20 node network

- DAPI provides substitute for absolute phase feedback (self-damping)

$$\dot{\omega} = \text{relative feedback} - d_i \omega_i - \underbrace{\frac{1}{q} \int_0^t \omega(\tau) d\tau}_{\rightarrow \theta_i}$$
- “Cheaper” to rely on self-damping as power flows associated with costs
- Need to align with neighbors — but too strong alignment reduces self-damping effect

Summary: Power networks, price of synchrony

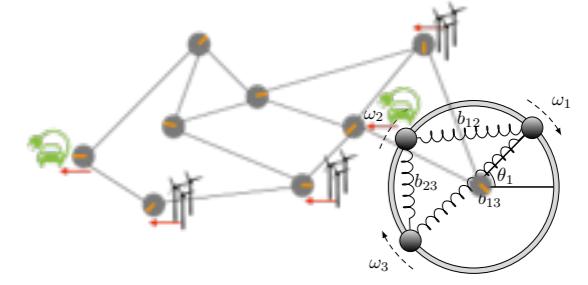


- Measure performance of power networks in terms of losses incurred in synchronization
- With standard control, losses increase with network size, but do not depend on network connectivity
- Distributed PI control can reduce losses by emulating self-damping

More in the thesis

- Elaboration on H_2 norm interpretation in terms of power losses
- Renewable energy integrated grids
 - microgrids with variable voltages
 - heterogeneous oscillator networks
- Optimal configuration of the DAPI controller

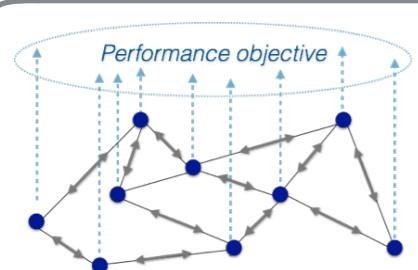
Summary: Power networks, price of synchrony



See also:

- E. Tegling, B. Bamieh and D. F. Gayme: The price of synchrony: Evaluating the resistive losses in synchronizing power networks. *IEEE TCNS*, Sep 2015
- E. Sjödin and D.F. Gayme: Transient losses in synchronizing renewable energy integrated power networks. *ACC*, Jun 2014.
- E. Tegling, D. F. Gayme, and H. Sandberg: Performance metrics for droop-controlled microgrids with variable voltage dynamics. *CDC*, Dec 2015.
- E. Tegling, M. Andreasson, J. W. Simpson-Porco, and H. Sandberg: Improving performance of droop-controlled microgrids through distributed PI-control. *ACC*, Jul 2016.

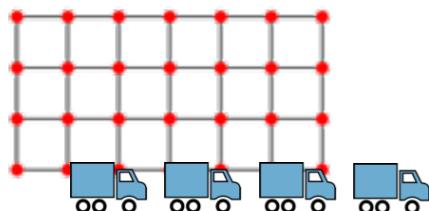
OUTLINE



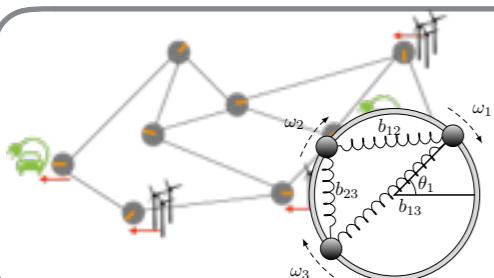
Introduction and problem formulation

H^2

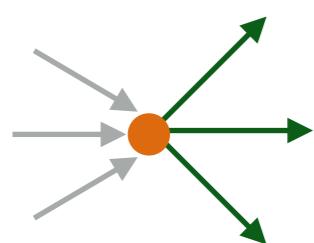
Evaluating input-output performance



Case 1: Regular lattice networks, coherence



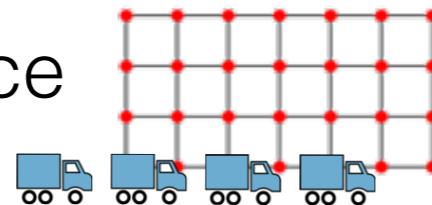
Case 2: Power networks, price of synchrony



Conclusions and future work

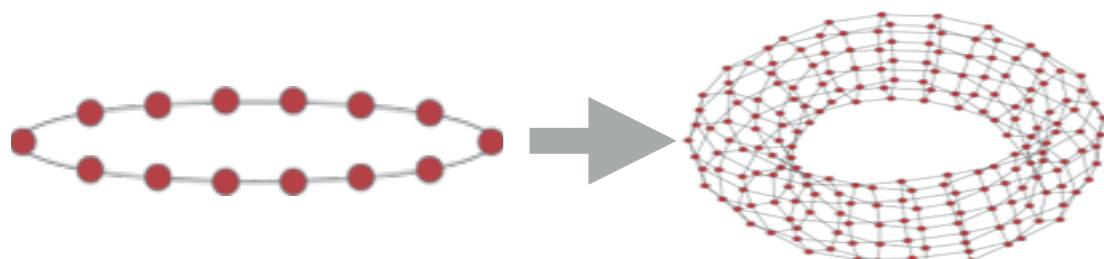
Scaling of performance is a limitation in networked systems with local feedback

Case 1: Coherence



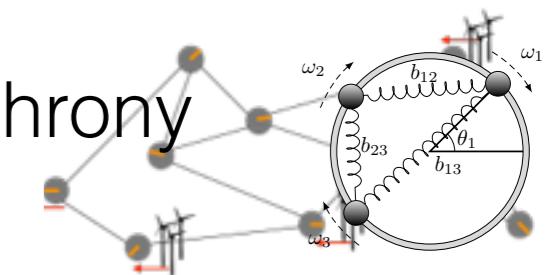
- *Global* disorder
- Measured per node
- Scaling (worst case):

$$V_k \sim N^3$$



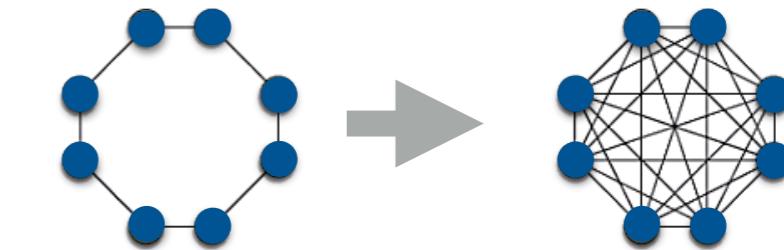
- Performance improvement

Case 2: Price of Synchrony



- Power losses caused by *local* disorder
- Measured over entire network
- Scaling:

$$\mathbf{P}^{\text{loss}} \sim N$$



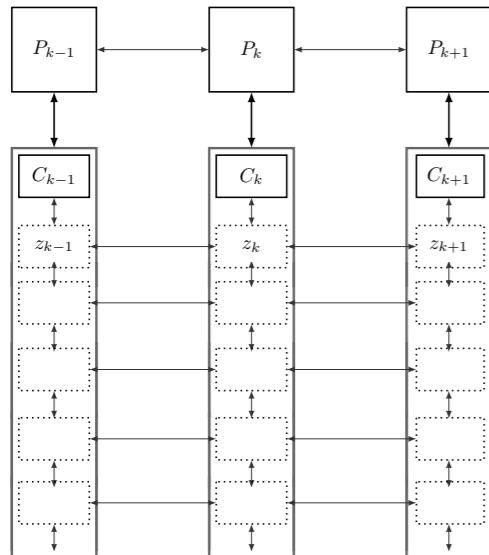
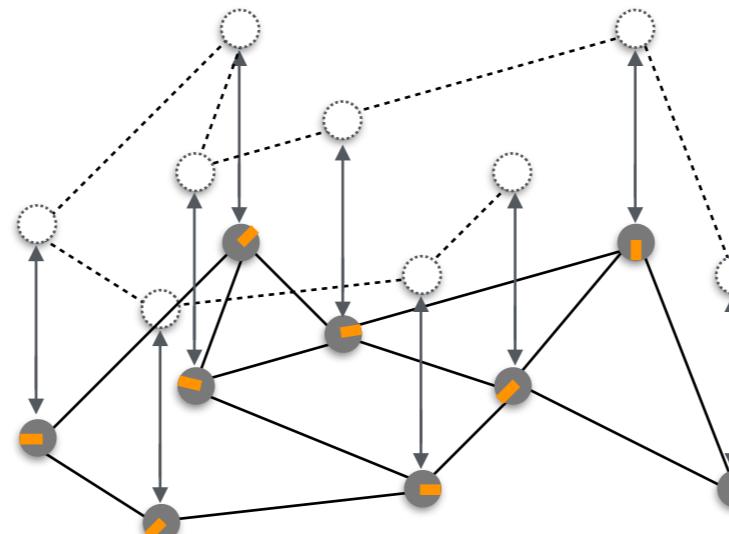
- No performance improvement

- Absolute feedback key in improving performance
- Dynamic control laws can emulate absolute feedback, if *distributed!*
- Limitation in terms of scaling remains

Future work includes further exploration of distributed dynamic feedback

Topics to explore

- Higher-order controllers
- DAPI control architecture
- Other performance metrics



\mathcal{H}_2 vs. \mathcal{H}_∞ vs. ...

Thank you!