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Abstract— We apply an operator-theoretic viewpoint to a
class of non-smooth dynamical systems that are exposed to
event-triggered state resets. The considered benchmark prob-
lem is that of a pendulum which receives a downward kick
at certain fixed angles. The pendulum is modeled as a hybrid
automaton and is analyzed from both a geometric perspective
and the formalism of Koopman operator theory. A connection is
drawn between these two interpretations of a dynamical system
by establishing a link between the spectral properties of the
Koopman operator and the geometric properties in the state-
space.

I. INTRODUCTION

A considerable number of dynamical systems in engineer-
ing practice are essentially hybrid in nature. These systems
typically model non-smooth phenomena such as impact,
collision, and switching between several discrete modes.
Under the hybrid automaton framework, these discontinuities
are often expressed in terms of guard conditions, state resets,
and switching between several “system modes”. The imposi-
tion of such conditions result in so-called piecewise-smooth
dynamical systems of which the orbits are characterized by
smooth evolutions, interrupted by discrete jumps.

With the possibility of discontinuous orbits, it may not
always be convenient to characterize the state-space geom-
etry of a hybrid system in terms of its trajectories. A more
general viewpoint to take is to consider the evolution of
ensembles of initial conditions, or sets being propagated
under the flow. In this paper, we embrace this philosophy
by viewing a special class of hybrid systems from an
operator-theoretic point of view. In this approach, instead
of focusing on trajectories, the evolution of functions defined
on the state-space is considered. Our analysis is based-on the
machinery of Koopman operator theory and looks at the so-
called dynamics of observables. A remarkable feature to this
approach is that the dynamics can be interpreted as linear
in the space of observables, irrespective of the underlying
properties of the dynamical system in the state-space. The
Koopman (semi-)group is a one-parameter family of infinite-
dimensional linear operators, and this allows one to exploit
the tools of spectral operator theory. Analysis of nonlinear
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flow fields through the spectral properties of the Koopman
operator has already been carried out under various settings
[1]. From an applied context, these approaches have been
particularly useful in describing dynamically relevant modes
in fluid flows [2], [3], coherency in power systems [4], and
energy efficiency in buildings [5].

The purpose of this paper is to illustrate how Koopman
analysis can also be applied to certain classes of hybrid
systems which consist of a single discrete mode, but are
subjected to guard conditions and state resets. The em-
phasis will be on a specific benchmark pendulum system
that is subjected to downward “kicks” at fixed angles. For
this particular example, we show how certain important
geometric structures, pertinent to the underlying flow field,
are recovered from the spectral properties of the operator.
Overall, two cases are considered: (i) the undamped case
where the continuous part of the system is Hamiltonian, and
(ii) a damped case where the pendulum is exposed to viscous
damping.

The paper is organized as follows. Section II reviews the
essentials of Koopman operator theory and introduces the
specifics on the hybrid pendulum. Section III analyzes the
undamped case from a geometric perspective. Section IV
then views the undamped system from the Koopman operator
perspective. In Sections V and VI, the same are done
respectively for the damped case. A reflection on the obtained
results is covered in the conclusions. Proofs of many results
are omitted to satisfy page limits, but can be found on ArXiv

[6].

II. PRELIMINARIES: KOOPMAN OPERATOR THEORY AND
THE “HYBRID PENDULUM”

In Section II-A we review certain basics of Koopman op-
erator theory [1], [7]. The details on the “hybrid pendulum”
are covered in Section II-B.

A. Koopman operator theory

Let X C RY denote the state-space and S : X — X
a flow map satisfying the (semi-)group properties: S* o
S*(x) = 8'"*(x), 8°(x) = x. Now consider an observable
g : X — C. For some fixed ¢t € R, the Koopman operator is
defined by,

[U'g] (z) :=go S*(x) (1)
The formulation (1) permits an alternative representation of

a dynamical system in which one looks at the dynamics of
observables. That is, the original system expressed by the



tuple (X, S*,t) can be alternatively represented by (G, U?, t),
where G denotes the space of observables. A remarkable
aspect to this representation (G,U,t) is that U* is always
a linear operator, irrespective of the original properties in
the state-space. This linear description of a nonlinear, and
possibly, non-smooth system is obtained through “lifting” the
dynamics on the state-space to a higher, infinite-dimensional
space of functions.

Koopman eigenfunctions/-distributions: The linearity of
U* allows one to exploit the machinery from spectral operator
theory. In particular we may define eigenfunctions for these
operators. A nonzero function ¢, € G is called a Koopman
eigenfunction if it satisfies,

U ¢r] () = eMoa(x) )

for some eigenvalue A € C. We remark that, depending on
what norm and measure is used on X, the expression ¢ # 0
must be interpreted in an almost everywhere (a.e.) sense.
For example, for square-integrable functions with respect
to measure 4, we have the condition: [|¢x|l, , # 0, where
olly,,, = (fx [o(@)Pdu)?.

Given the infinite-dimensional nature of the operator, U*
may also contain a continuous spectrum. In that case, one can
extend the notion of eigenfunctions in an appropriate weak
sense using the concept of distributions. These generalized
objects, referred to as eigendistributions, satisfy the relation:

[ o) @u@n = [ @@ 6
X X

where w(x) is some arbitrary test function on X. Indeed, it
follows that all eigenfunctions are eigendistributions, but the
converse does not hold true.

Eigenfunctions/-distributions are preserved under conju-
gacy. If S* : X — X, R : Y — Y are two topologically
conjugate dynamical systems under the homeomorphism
h : X — Y,ie hoS'z) = R'o h(z), and if ¢,
is an eigenfunction/-distribution of U}, then ¢ o h is an
eigenfunction/-distribution of L{g [1].

Koopman eigenfunctions are directly related to the geo-
metric state-space description of a dynamical system in the
following sense. Let:

Vg, ={xec X:o\(z) =c}

denote a specific level-set of an eigenfunction. Then the
mapping of the set W¢ ~forward under the flow yields the
relation:

St ( ;A) _ \Ijzf\xp(kt) (4)

The interpretation of (4) is that the level-sets of ¢, char-
acterize how specific ensembles of initial conditions are
propogated under the flow. It is exactly this specific property
which allow us to analyze the geometric properties of the
state-space from an operator theoretic context.

Projection operators: Given an observable g, one may
obtain the projection of this observable onto the fixed space
(i.e. eigenspace at eigenvalue A\ = 0) by evaluating the
infinite time averages of observable-traces:

t

t

Jim | U’ g] (z)dt )
By Birkhoff’s ergodic theorem [8], the integral (5) is known
to converge a.e. for integrable functions with respect to the
invariant measure of the system. Through adding a weighting
term, one may obtain also projections of g onto eigenspaces
other than zero. In general, we define a projection operator:
t

[PAg] (z) = im = [ UG (@A (©)

t—oo t 0
where the right-hand side of (6) is generally known as the
Laplace average of g [1]. One can verify through substitution
that P*g is indeed an eigenfunction of (1) at eigenvalue )\,
provided the improper integral converges.

B. The hybrid pendulum

Consider a mathematical pendulum with length [ and
mass m. In the absence of damping or external forcing, the
equations of motion for this system are formed by defining
z:=(0,w) €S x R=: X and f: X — R? such that:

&= fle) = [<g/7> sine} |

Now suppose that the pendulum experiences an instantaneous
backwards “kick” when passing through the given angles
+60*. This kick is modeled by an instantaneous change in
angular velocity Aw > 0. In the hybrid automaton notation,
the kick is included in the model as areset map R : X — X
defined by,

(—0",w+ Aw) if (0 = —0%) A (w < 0)
0 =

if
R(0,w) = {(9*7w—AW) if ( 0*) A (w > 0)

where, for ease of notation, we have incorporated the guard
conditions as well. Note that the reset only occurs upon
passing through +6* from below, so that the kick is always
directed towards the stable equilibrium point of the pendu-
lum. We also remark that according to this formulation, no
reset occurs when the pendulum only grazes the “kicking
surfaces” at +6*. The situation is illustrated in Fig. 1,
where we also show the corresponding hybrid automaton
representation and the state-space.

Normalized equations: To simplify our analysis, it is
convenient to normalize the state « by dividing the angular
velocity w by the kick strength Aw, i.e.

m - [ (u%lﬁf) sin 9} (7)

(_9*727"‘1)
(9*,])— 1)

if (0 =—6") A (p <0)

if (0=0)v(p>0) ’ ®
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Fig. 1: The hybrid pendulum: (left) upon passing the angle +6* from below the pendulum experiences a change in angular
velocity by Aw, (center) the corresponding hybrid automaton representation, (right) the state-space of the system.

where p = w/Aw denotes the normalized momentum. The
equations (7), (8), are parametrized in terms of py := Aw >
0 (the kick strength) and ps = w, := \/97/1 > 0 (the
natural frequency of the linearized pendulum). Note that
the continuous part of the (undamped) hybrid pendulum is
Hamiltonian. One can verify that the function:

2
H(,p) = E <Mp> +1—cosf 9)
2 \ p2

constitute an invariant for the flow of (7). This particularly
implies that, in between state resets, the trajectories of the
pendulum are confined to level sets of (9).

The damped case: We will also look into the effects of
weak viscous damping on the system. The continuous part
of the hybrid system in that case is replaced by

=L tapains s

where k£ > 0 is the viscous damping coefficient.

(10)

III. THE UNDAMPED HYBRID PENDULUM: CLASSICAL
GEOMETRIC ANALYSIS

In this section, the state-space of the undamped hybrid
pendulum is described from a geometric perspective.

A. The Poincaré map

The trajectories of the freely oscillating pendulum are
confined to the level sets of (9). Through this observation, it
is clear that for initial conditions belonging to the set

Ay :={(0,p) € X : H(6,p) < H(6%,0)} (11)

the behavior of the hybrid pendulum is exactly identical to
that of the freely oscillating pendulum.

The more distinctive behavior can be found only in the
region: H(6,p) > H(6*,0). In this part of the state-space,
the pendulum gets “kicked” at least once in its orbit for
almost any initial condition. The only initial conditions that
never get kicked here are those that lie exactly on the
homoclinic orbit of the unstable fixed point, and additionally
satisfy 8 > 0*, p >0 or 0 < —0*, p < 0.

The dynamics of the kicked region can be fully understood
from a discrete map defined on the kicking surfaces. Given
that the orbits between two consecutive impacts are uniquely
determined by the momentum at +6*, a map can be defined

to describe the (normalized) momentum p)|,_ Lo of the

pendulum right before the next impact. To do this thoroughly,
we first describe those points on the kicking surfaces that
directly get mapped into the homoclinic orbit. Let:

Per = L2/2 F 2086~
21
denote the critical momentum required to be on the ho-
moclinic orbit and assign the variable v to be the state of
the pendulum at the unstable fixed point. The Poincaré map
T:{RU~v} — {RU~} is defined by

(12)

p+1 p<—Per+1)
p+1  —(Per+1)<p<O
T(p) = {" p=0 (13)
—p—=1 0<p<pe+1
p_1 pcr+1<p
gl p=7orp===£(pe +1)

B. Asymptotic dynamics of the hybrid pendulum

To fully describe the asymptotic dynamics of the pendu-
lum in the region: H(6,p) > H(0*,0), we first state the
following result about the map (13).

Lemma 1: The map T : {RU~} — {R U~} defined by
(13) has the following asymptotic properties:

() fpeD:={pcR:p=9Ap==%per +k),k €N},

then there exists M > 0, such that:

" (p) =1,

(i) If p ¢ D, then there exists a M > 0, such that:

Vn > M

T"(p) € [-1,1], ¥Yn>M
Lemma 1 states that the interval [—1, 1] is an attracting set
for (13). Furthermore, it states that the trajectories enter the
interval [—1, 1] in a finite number of iterations. The interior
of the attracting set is composed of:
(i) a fixed point at p = 0.
(i1) an uncountable family of period-2 cycles of the form:

p1 € (0, 1)

These results on the map (13) are related to the actual
hybrid system in the following way. The interval [—1, 1] from
Lemma 1 corresponds to the set

{p17p1 - 1}7 (14)

Ay = {(0,p) € X : H_ < H(0,p) < H,,|0| <07} (I5)



where:

H_:=H(0%,0), H,:=H(0"1). (16)

This set is foliated by an uncountable family of limit cycles.
In correspondence with the period-2 cycles of the map (13),
the limit cycles can also be parametrized by {p1,p1 — 1},
p1 € (0,1). We have the following relationship between the
original coordinates and the limit cycle in which the system
is on:

1 (0.p) = %\/Z(H(H,p)—l—l—cose*) p>0
e 1—%\/2(H(9,p)—1+cosﬁ*) p<0

a7

where (6, p) € As. In summary, we have the following result.

Theorem 1: The trajectories of the hybrid pendulum, start-
ing from almost everywhere in the region’: H(6,p) >
H(6*,0), enter into a discontinuous periodic orbit in finite
time.

C. Basin of attraction

The basin of a specific limit cycle p; can be found by
repeatedly computing the pre-images of the map (13). From
this construction, we observe that the basin of every limit
cycle is a measure zero set. Fig. 2 shows the basin of the
limit cycle at p; = 0.7 for three different values of p.,.

D. Action-angle coordinates

*

If the pendulum is released at & = —#* with an initial
momentum p; € (0,1), then the time required to reach a
certain 6 € [—6*,0*] is determined by the elliptic integral:

0 2 -3
I‘[@,pﬂ:/ 'ui [2 (; (lel) —cos@*—&-cosf)] d¢
—g+ M2 2

The function I'[f, p;] permits us to define action-angle coor-
dinates for the set (15).

The period of a specific limit cycle {p1,p; — 1} is given
by the formula:

On every limit cycle {p;,p; — 1}, we can assign a phase
coordinate ¢ € [0,27) such that: ¢y = 0 at (0,p) =
(—0*,p1). This is done as follows: let o(p1) denote the orbit
of a specific limit cycle, i.e.

o(p1) == {(8,p) € X : S*(—0*,p1) = (6, p) for some ¢t > 0}
Then, the phase on o(p;) can be defined as:

1 F[aapl]
Plpi] |T[0", 1] +T[0" — 0,1 — pi]

where (0, p) € o(p1).

The formulas (19) together with (17) define action-angle
coordinates for the interior of the set (15). That is, under the
coordinate transformation (I,v) = h(6, p), where:

hi(0,p) = p1(0,p)

p>0
p<O0

Y= (19)

(20a)

h2(97p) =

1 [0, p1(8,p)] p>0
P[p1(97p)] F[a*apl(ovp)]+r[0*_97 1_p1(07p)] p< 0
(20b)

the set As is mapped onto the set Y := (0,1) x S' under
which the flow is simply

RU(I,y) = (I, (]t + )

where Q[I] := 2x/PII].

The kicked pendulum has an invariant measure whose
support is restricted to the set As. In fact, under the bijection
(20) the dynamics on the set A5 is conjugate to the Lebesgue
measure-preserving system in (21). Hence, if ;v denotes the
Lebesgue measure for the domain (III-D), then

mod 27) 21

fia, = py oh (22)

is an invariant measure for the hybrid system on (15).

IV. THE UNDAMPED HYBRID PENDULUM: KOOPMAN
ANALYSIS

In this section, the undamped hybrid pendulum is analyzed
from the Koopman operator theory perspective.

A. Eigenspace of Koopman at A =0

As it was observed from (4), the level sets of Koopman
eigenfunctions at A = 0 partition the state-space into invari-
ant sets. In fact, the characterization of the eigenspace at
A = 0 is directly related to the ergodic partition [9], [10].

To describe this partition for the hybrid pendulum, con-
sider at first the dynamics on the invariant set (15). From Sec-
tion III, we know that this set is foliated by an uncountable
family of limit cycles. Given this property, one can verify
that

¢o(0,p) = 6(h1(0,p) — o),

with § denoting the Dirac delta function, form a collection
of eigendistributions at A = 0, where hy specifically refers
to (20a). In a certain sense, these distributions are the
building blocks of all eigenfunctions at A = 0. That is, if
¢ :(0,1) — C denotes any (Riemann) integrable function,
then the convolution:

1
¢o(9,p):/0 c(D)6(hy(0,p) — IdI =

is an eigenfunction at A = 0.

The definition of ¢y can be extended to outside of A,
if all initial conditions belonging to the basin of a particular
limit cycle {p1,p1 —1} are assigned the value ¢(p;). Clearly,
if ¢ is a bijection, the level sets of ¢y separates the basins
of every limit cycle.

A method to find eigenfunctions directly from the time-
histories of observables involves computing their infinite-
time averages (5). These averages are projections of observ-
ables (6) onto the eigenspace at A = 0, and for observables
that are integrable on the set A, these averages are well-
defined almost everywhere in the kicked region (follows
directly from Theorem 1).

Ihe(0,1) (23)

c(hi(6,p))
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Fig. 2: Basin of attraction for the limit cycle with p; = 0.7.
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Fig. 3: Projections of observables onto the eigenspace of Koopman at A = 0. The boundaries of the set of limit cycles (15)
is demarcated in black, p; = 1 rad/s, 2 = 1 rad/s, and 0* = % rad. The top two figures are the results obtained with the
Hamiltonian function (9), whereas the bottom two are those obtained with the signed Hamiltonian function (24). The figures
on the right show a close up of the results into the region [0,2] x [0,2].

The top two panels in Fig. 3 depict a high-resolution equivalence classes are not the actual limit cycles themselves,
contour plot of a projection PYg, when g is a set equal to  since trajectories that end up in the limit cycles:
the Hamiltonian function (9). In the figures, states that have
the same color belong to the same level set, and hence, fall {pr.pr =1} and {1 =p1,=pi}, p1€(0,1/2)
under the same equivalence class of long-term dynamical have exactly the same time-average.
behavior. Note that for this particular eigenfunction, these To obtain a more refined partition, one generally needs
to consider the product partition of multiple projections



conjointly [11]. For the pendulum however, we may also
determine the time-average of the observable:

g(0,p) = sign(p)H(0, p)

which gives the Hamiltonian a sign, depending on the
direction in which the pendulum is moving. This observable
is capable of separating the limit cycles {p;,p; — 1} and
{1 — p1,—p1} from each other. The bottom two panels of
Fig 3 show contour plots of the projections obtained with
this observable.

(24)

B. Spectral decomposition on the set of limit cycles

We have pointed out that the hybrid pendulum is measure-
preserving on the set (15), and an invariant measure is given
by (22). A consequence of this property is that the Koopman
operator is unitary in L?(Asg, p14,) and observables belong-
ing to this space of functions admit a spectral decomposition
with purely imaginary spectrum [8].

The derivation of the spectral decomposition is most
conveniently obtained by first deriving the decomposition for
the conjugate system (21) and then applying the conjugacy
property of Section II-A. The evolution of a square-integrable
function g(I,7) € L?(Y,uy) under the action of the
Koopman operator is given by,

[U'g) (I,9) = g(I,¥ + Q[I]t mod 2r).

By expanding the observables in a Fourier series we obtain:

Uig] (1) = U | g;(I)e”
JEZ
— g nennein

JEZ
/O o(1)3(s — D)ds +

[ ey mer s - pap

JEL,jF#0
The spectral expansion can be written in the form:

[Ulg] (I 4) = g"(I) + / FMAB(p)g(1 ) (25)

R
where the time average g* only has dependence on I and
where the projection-valued measure dE(p) has the explicit
expression:

dE(p)g(I,) = > g;(1)e*6(jUI) — p)dp
JEL,jF0

Substitution of (20) into (25) will yield the spectral expansion
in the original coordinates. Note that the spectrum of the

operator turns out to be continuous [12].

V. THE DAMPED HYBRID PENDULUM: CLASSICAL
GEOMETRIC ANALYSIS

In this section, the damped hybrid pendulum, descibed by
(10), is studied from the geometric perspective.

A. Poincaré map for the damped system

The asymptotic properties of the hybrid pendulum under
viscous damping can again be analyzed through the study of
a discrete map. Because of dissipation, all trajectories that
start at H (0, p) > H(0*,0) must eventually enter the set As.
Given that all trajectories in A4; spiral into the stable fixed
point of the pendulum, the analysis of what happens in A5
is critical to determining the global properties of the system
overall.

The analysis is pursued by viewing the system in terms of
its energy state H, which has a one-to-one correspondence
with the normalized momentum p if we exploit the inherent
symmetry in the system. The discrete map that characterizes
the dynamics inside A5 is defined in reference to the energy
at the condition (+£6*,p), where 0 < p < 1. In the most
general sense, the map takes the form:

H =u(H):= fod(H) (26)

Here, u is a composition of two separate functions: d,
which represents the energy dissipated due to damping as
the pendulum traverses from +6* to F6*, and f, which
represents the energy change related to the kicking of the
pendulum at +6*. By knowing the change in momentum
that occurs after a kick, and given (9), one can derive that:

f(H)=H - (’g)zp(H) +3 (Z;)Q &)

where:

p(H) = %\/2(H+COSO* -1)
1
The dissipation function d, on the other hand, must be
a monotonically increasing function and takes the form
d(H) = r(H)H with 0 < r(H) < 1 for all H > 0.
Based on numerical simulations [6], we henceforth make a
specific assumption that the dissipation function is linear:

d(H)=rH, 0<r<l1

B. Main result

In the undamped case, the map (26) is defined on the
domain [H_,H.] (see (16)) and has a neutrally stable
fixed point at Hyp, g = H(6*,1/2). Furthermore, it has an
uncountable family of neutrally stable period-2 cycles , since
f?:= f o f =1d. The introduction of damping restricts the
domain of the map (26) to [Hy, H,|, where Hy := H_/r.
The range of (26) equals u([Ho, Hy]|) = [H—, H], hence
a subset of initial conditions will eventually get mapped
outside the domain of u. The next theorem shows that this
subset is, in fact, the entire domain except for one specific
point corresponding to the unstable fixed point of u.

Theorem 2: Consider the map (26) and assume that the
dissipation function is linear. Furthermore, denote » = 1 — 4,
with § > 0 sufficiently small. Then:

(i) there exists a unique fixed point H,(d) > Hyp o which

is unstable.
(i) the map u := f o d, defined by (26), has no period
2-cycles.



(ili) VH # Hyp(6), In > 0 s.t. w™(H) ¢ [Ho, Hy|

Corollary 1: For § > 0 sufficiently small, the trajectories
of the hybrid pendulum, starting from almost everywhere,
asymptotically reach the fixed at 6 = 0.

VI. THE DAMPED HYBRID PENDULUM: KOOPMAN
ANALYSIS

In this section, the damped hybrid pendulum is analyzed
from the Koopman operator theory perspective.

A. Eigenspace of Koopman at A =0

From Corollary 1, it follows that almost all trajectories
end up at the stable equilibrium of the pendulum as time
approaches infinity. This has specific implications to the
eigenspace at A = 0 if one restrict the Koopman operator
to those functions! which are continuous at (6, p) = (0,0)
The introduction of damping, in that case, would severely
simplify the eigenspace at A\ = 0, given that the only
permissible eigenfunctions are now those which are constant
almost everywhere in X.

B. Point spectrum of the operator

The addition of viscous damping turns the fixed point at
6 = 0 into a spiral sink. In terms of the Koopman operator,
these changes give rise to a point spectrum in the left-half
complex plane. The point spectrum contains products of the
eigenvalues’ of the linearized pendulum dynamics:

- S Jo 1

}T

(28)

where y = [9 p|~ and whose eigenvalues are given by
MA=—o+in, with o = 1k, n= /1 — 1k2.
Following the concepts discussed in_[13], [14], one can

show that an eigenfunction at A and A can be computed
from the observables:

91(0,p) = % v ] [f,] 2, (29)
o = O

91(0,p)
where v, U are the right eigenvectors of A.

Theorem 3: Consider the damped hybrid pendulum de-
fined by (8), (10). Then,

dx/3(0,p) = [or(p, 0)]e= 14O (O) 31)

with:
t

e’ U™ g1] (0, p)dT (32a)

t
e (U go] (6, p)dT(32b)

lim —
t—oo ¢ 0

[ox(0,p)] =

1
lim —
t—oo 0

oFilon0.p) .

are Koopman eigenfunctions at eigenvalues \/\ = —o +i7.

Note that for the damped hybrid pendulum, this space of functions is an
invariant subspace of the operator.

2This follows from the property Ugige = (Ug1) (Ug2), see [1] for
details.

Figure 4 shows a contour plot of the eigenfunctions in
Theorem 3. The functions |¢y(0,p)| and 42 (%P) have
the following geometric interpretation. The level sets of
|&x (0, p)| define the so-called isostables [14] and describe
the set of points that have the same asymptotic conver-
gence toward the fixed point. In particular, se see that the
isostables blow up in the region that corresponds to the
unstable periodic orbit (associated with the fixed point in
Theorem 2). The level sets of ¢*“?*(®P) (or equivalently
those of Z¢((6,p)), on the other hand, describe the set of
points that simultaneously move in phase around the fixed
point.

A close examination of the contour plots suggests that
merging of trajectories indeed occur for certain initial condi-
tions in (15). Additionally, the phase plots indicate that the
kicking of the pendulum introduces a high level of phase
sensitivity [15] close to the unstable periodic orbit.

Overall, the eigenfunctions of Theorem 3 can be used
to describe a semi-conjugacy with a linear system. Specif-
ically, the modulus and phase form a map (0,p) —
(lox(0,p)|, ZdA(0,p)), such that under the new coordinates
we have the simplified dynamics:

d
%WA(@’Z?)\ = —ol|ea(0,p)]
d

— 2L (0 =
o oA(0,p) n
VII. CONCLUSIONS

The spectral properties of the Koopman operator are
closely related to the geometric properties of the state-space,
and in this paper, we have discussed in detail how these
relationships exactly manifest for the hybrid pendulum. The
connections between level sets of Koopman eigenfunctions
and the corresponding flow field were useful for visualiz-
ing certain geometric properties of the state-space. In the
undamped case, the ergodic partition, obtained by projecting
of observables onto the eigenspace at zero, yielded a method
to visualize the basins of attraction of the limit cycles. In the
damped case, the eigenfunctions associated with the spectra
in the left-half complex-plane, provided a set of coordinates
to establish a semi-conjugacy with a linear system.

REFERENCES

[1] M. Budisi¢, R. Mohr, and I. Mezi¢, “Applied Koopmanism,” Chaos,
vol. 22, no. 4, 2012.

[2] 1. Mezi¢, “Analysis of Fluid Flows via Spectral Properties of the
Koopman Operator,” Annual Review of Fluid Mechanics, vol. 45, no. 1,
p. 121005161233001, 2012.

[3] C.W.Rowley, I. Mezi¢, S. Bagheri, P. Schlatter, and D. S. Henningson,
“Spectral analysis of nonlinear flows,” Journal of Fluid Mechanics,
vol. 641, no. Rowley 2005, p. 115, 2009.

[4] Y. Susuki and 1. Mezic, “Nonlinear Koopman Modes and Coherency
Identification of Coupled Swing Dynamics,” IEEE Transactions on
Power Systems, vol. 26, no. 4, pp. 1894-1904, 2011.

[5] M. Georgescu and 1. Mezi¢, “Building energy modeling : A system-
atic approach to zoning and model reduction using Koopman Mode
Analysis,” vol. 86, pp. 794-802, 2015.

[6] N. Govindarajan, H. Arbabi, L. van Blargian, T. Matchen, E. Tegling,
and I. Mezi¢, “An operator-theoretic viewpoint to non-smooth
dynamical systems: Koopman analysis of a hybrid pendulum,” 2016.
[Online]. Available: http://arxiv.org/abs/1608.08734



2
08 12 X .
1.8 N X 4
1 . .
e 0 —16F B B E
a8 & s N
oo1ar i i ]
1 i
85 26 L N N
S 12k ] ! 4
= \ \
04 - RN RN
/ /
1+ \ \ g
1 / AN / N
oz s < ’ <
~ ~
081 — ~ — =~ B
1 oL 08 04 0.2 a a2 04 08 o8 1 L L L L L L L L L
i -1 08 06 04  -02 0 02 04 06 08 1
P
(a) The modulus |¢y ()|
3
2
4
1
ab N . B
oL —_— —_—
¢ — ~ ~
ot 1
Y - - - -
-4 | o ~ —_— ~ i
-
=
S .= - i
2 Ll |
3 P P b
-3
" \ \ \ \ \ \ \ \ \
-1 08 06 -04  -02 0 02 0.4 06 08 1
P

(b) The phase Z¢» ()

Fig. 4: The Koopman eigenfunction ¢ (x) of Theorem 3 shown for the regions (11) and (15). The right panels display the
eigenfunction at a cut: § = —0*, p € (—1,1). The viscous damping coefficient is set to k = 0.03.

[7] 1. Mezié, “Spectral properties of dynamical systems, model reduction
and decompositions,” Nonlinear Dynamics, vol. 41, no. 1-3, pp. 309—
325, 2005.

[8] K. E. Petersen, Ergodic theory. Cambridge University Press, 1989.

[9] 1. Mezi¢ and S. Wiggins, “A method for visualization of invariant sets
of dynamical systems based on the ergodic partition.” Chaos, vol. 9,
no. 1, pp. 213-218, 1999.

[10] 1. Mezi¢ and A. Banaszuk, “Comparison of systems with complex
behavior,” Physica D-Nonlinear Phenomena, vol. 197, no. 1-2, pp.
101-133, 2004.

[11] 1. Mezi¢, “On the geometrical and statistical properties of dynami-
cal systems: theory and applications,” Ph.D. dissertation, California
Institute of Technology.

[12] 1. Mezié, Spectral Operator Methods in Dynamical Systems : Theory
and Applications, DRAFT manuscript UCSB, 2016.

[13] Y. Lan and I. Mezi¢, “Linearization in the large of nonlinear systems
and Koopman operator spectrum,” Physica D: Nonlinear Phenomena,
vol. 242, no. 1, pp. 42-53, 2013.

[14] A. Mauroy, 1. Mezi¢, and J. Moehlis, “Isostables, isochrons, and
Koopman spectrum for the action-angle representation of stable fixed
point dynamics,” Physica D: Nonlinear Phenomena, vol. 261, pp. 19—
30, 2013.

[15] A. Mauroy and I. Mezi¢, “Extreme phase sensitivity in systems with
fractal isochrons,” Physica D: Nonlinear Phenomena, vol. 308, pp.
40-51, 2015.



