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Networked systems: global objectives,  
but local feedback

2
Are there limitations to network performance?



Problem setup: Linear, second-order consensus 
subject to distributed disturbances
• Consider connected graph with N agents 

• Each agent i is double-integrator 

• Control objective: follow trajectory 
• Standard linear consensus / Proportional (P) control

3        deviation from state trajectory,      setpoint,                         fixed, constant gains,       neighbor set

• Let each agent be subject to stochastic disturbance     



Example 1: Large-scale vehicle platoons
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……

• What happens if the platoon grows?

……

• Objective: follow trajectory                               
- common cruising speed   
- tight constant spacing    , so that 

f+, f�, g+, g�(                        constant gains)

• Example control law: look-ahead, look-behind control 

• With disturbances: objectives only achieved approximately



Example 1 (contd.): Performance issues  
if control based on relative feedback
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• Formation is stable  

• Spacings      are well-regulated (no collisions!) 

• However - not a rigid formation, not coherent!  

• Fundamental limitation to local, static feedback (Bamieh et al., 2012)

Can dynamic feedback (PID control) help?

Time trajectories of 100 vehicles, relative to leader, seen from above
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Example 2: Frequency control in power networks
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• Transition to distributed generation affects power system dynamics 
- More disturbances,  (many) more generators

!i = ✓̇i

✓i

• Objectives:  
- common, steady frequency      (60 Hz) 
- phase angles at equilibrium 

• Swing equation, or “droop control” (linearized)

(bij line susceptance, mi inertia, di damping)



• Simulation of droop control on 10 vs 100 node network (tree graph)
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Example 2 (contd.): Issues with scalability of 
standard droop controller

• Today: Better scalability with distributed PI-control (dynamic feedback)
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Problem setup: Performance is quantified 
through a measure of network coherence
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• Consider each agent’s deviation from the network average 

• Characterizes rigidity, coherence

• Performance is measured as variance of performance output,  
normalized by N

• Interested in the scaling of the output variance with network size



- Absolute feedback from           if              nonzero

Summary: We characterize scalability of 
distributed control laws
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• Model: Second order consensus with performance output

• Performance evaluation:
- Consider (asymptotic) scaling of  

variance                                        

- Control law scales well only  
if        bounded in N

N

V
N

• Objective: Compare static vs.  
dynamic feedback

(              weighted graph Laplacians, 
assume                                
for some (weighted)     )



OUTLINE

Introduction and problem formulation
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Lemma: 
The squared H2 norm of (1) from input      to output      gives 

That is, the steady state output variance.

w y

Performance is evaluated through  
input-output H2 norms
Consider general linear system under white noise input
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ẋ = Ax+ Bw
y = Cx

(1)

Recall: 
       Need to evaluate                           ,  with

Evaluating system performance amounts to evaluating H2 norms!



Eigenvalues near zero cause bad performance
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Re

Im

• As N grows: Arbitrarily many      increasingly close to zero  

• Sum blows up, unless                   , i.e., absolute feedback

-1
1

-2 -1,5 -1 -0,5 0

• Eigenvalues

Example (Ring graph, uniform weights):

Precise scaling of VN in N can be determined for regular graphs

Theorem



• Let network be d-dimensional lattice

P-control scales badly in sparse networks, 
unless absolute feedback available
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d = 1 d = 2 d = 3

• Recall:
Relative feedback Absolute feedback

…

Asymptotic performance scalings with static feedback (see e.g. Bamieh et al., 2012)
Up to a constant independent of gain parameter    and network size N�

Relative x, relative v Relative x, absolute v, 
Absolute x, relative v Absolute x, absolute v



OUTLINE

Introduction and problem formulation
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Various strategies proposed to deal with 
performance limitations
• Assign select leaders with absolute measurement (1st order consensus) 

- S. Patterson et al. “Leader selection for optimal network coherence,” CDC 2010  

- F. Lin et al. “Algorithms for leader selection in stochastically forced consensus 
networks,” TAC 2014 

- M. Pirani et al. “Coherence and convergence rate in networked dynamical 
systems,” CDC 2015  

• Optimize gains, change symmetries  
- T. Summers et al. “Topology design for optimal network coherence,” ECC 2015  

- F. Lin et al. “Optimal control of vehicular formations with nearest neighbor 
interactions, TAC 2012 

• Here: use distributed PID-control 
- M. Andreasson et al. “Distributed control of networked dynamical systems: Static 

feedback, integral action and consensus,” TAC 2014 

- D. Lombana and M. di Bernardo, “Distributed PID control for consensus of 
homogeneous and heterogeneous networks, TCNS 2016 
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Idea: use derivative or integral action to 
substitute unavailable measurement
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Integral action  
Absolute v-measurement 

• Integral of v-measurement 
corresponds to x 

• Ideally: same performance as 
with absolute feedback in x,v 

• Decentralized integration does 
not give robustly stable system

Derivative action  
Absolute x-measurement 

• Derivative of x-measurement 
corresponds to v 

• Ideally: same performance as 
with absolute feedback in x,v 

• Ideal derivative action not 
possible to implement  
+ sensitive to noise

Modifications of the control laws required to enable implementation



Filtered distributed PD-control (F-DPD)
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Theorem

For any positive KD  and   ,                is uniformly bounded in N for any network:

• Higher order filters give same result 
• Theoretical performance best if filter constant            

• Control law:    (Laplace domain!) 

• Low-pass filter prevents too large variations in control signal



Distributed averaging PI-control (DAPI) 1(2)
• Control law: 

• Distributed averaging filter prevents de-stabilizing 
drift by aligning integral state 

• Proposed in power system context (secondary 
frequency control)
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Theorem
Assume uniform ratios            , so                , then               

For any positive and finite KI  and c,            is uniformly bounded in N:
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Distributed averaging PI-control (DAPI) 2(2)
• Design of distributed averaging filter affects 

performance  

-   

-                    same perf. as w/o PI control 

- In some cases,  optimal 
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Corollary  (optimal distr. averaging)

The optimal gain              if

for all  

• For insights to optimal topology, see X. Wu et al. (ACC, 2016), D. Deka et al. (ACC, 2017)



Summary: PI and PD control can relax 
performance limitations
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Relative x, relative v Relative x, absolute v, 
Absolute x, relative v Absolute x, absolute v
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Example 1: F-DPD in vehicular formation

• Assume no speedometer, but 
position is known 

• Compare standard protocol  
to F-DPD
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Example 2: DAPI in frequency control
• In power networks, frequency      can be measured, but measurement of 

phase      requires phasor measurement unit (PMU) 

• DAPI improves performance and scalability, +eliminates stationary error

22
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Introduction and problem formulation
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Ongoing and future work
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• Can scalings at all be improved without absolute measurements?
• Issues with measurement noise and bias

• Further applications in power networks: 
- Scalability of frequency control 
- Use of PMUs

N
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