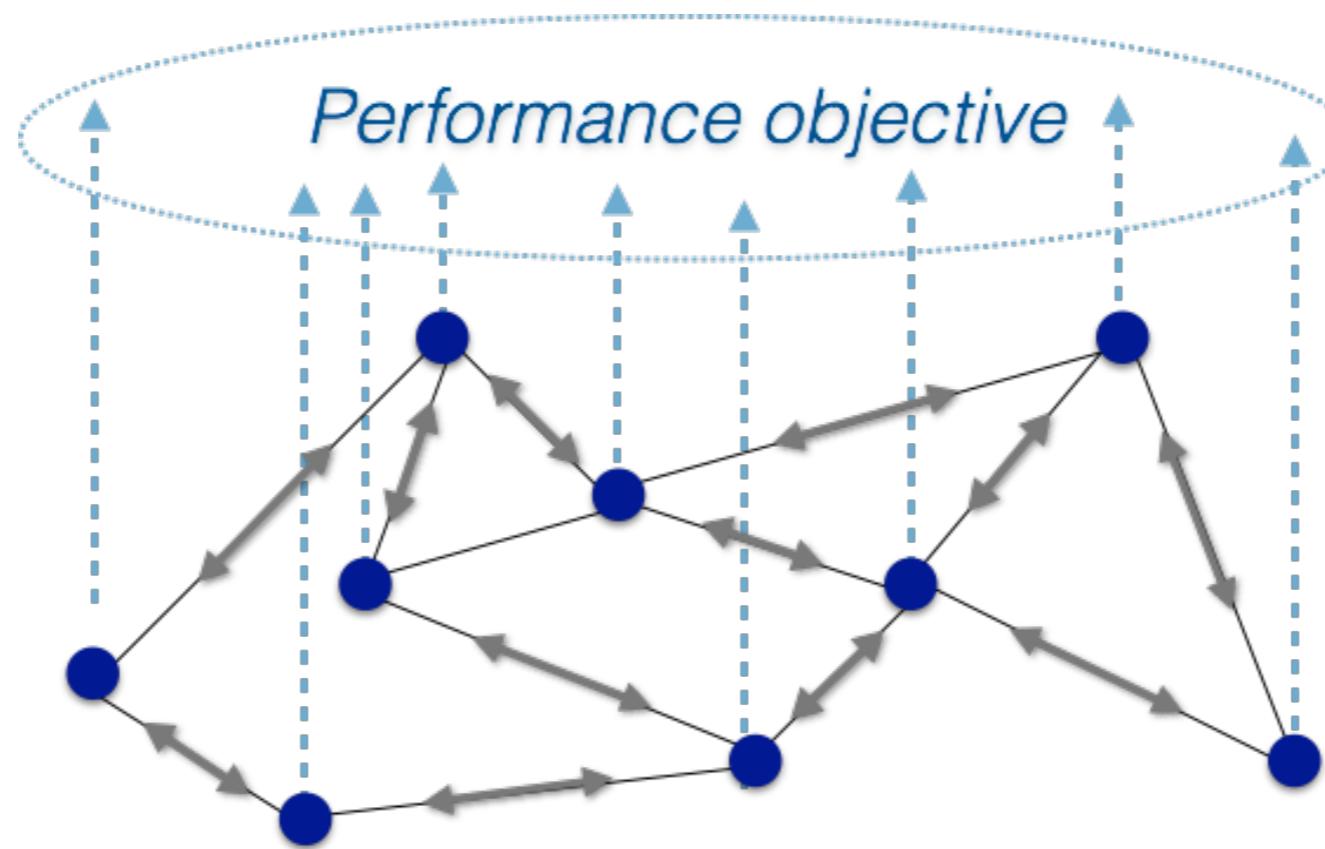


On the Coherence of Large-Scale Networks with Distributed PI and PD Control

Emma Tegling and Henrik Sandberg

Networked systems: *global* objectives, but *local* feedback



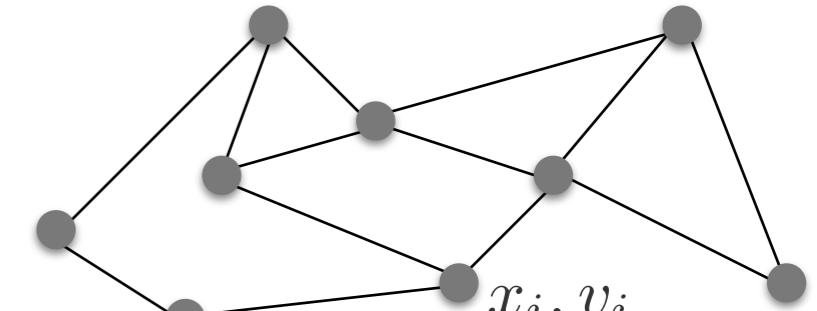
Are there limitations to network *performance*?

Problem setup: Linear, second-order consensus subject to distributed disturbances

- Consider connected graph with N agents
- Each agent i is double-integrator

$$\dot{x}_i(t) = v_i(t)$$

$$\dot{v}_i(t) = u_i(t) + w_i(t)$$

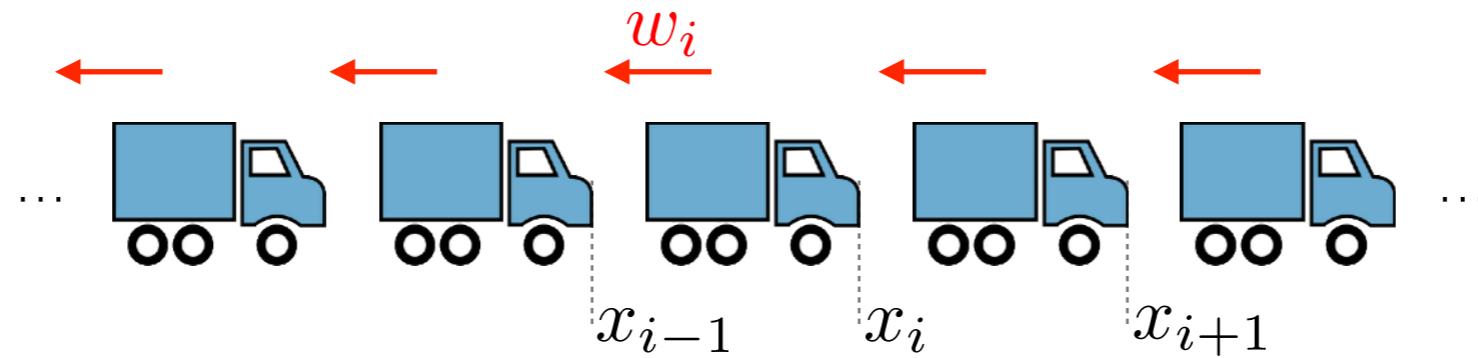


- Control objective: follow trajectory $\bar{x}_i(t) := \bar{v}t + \delta_i$
- Standard linear consensus / *Proportional (P) control*

$$u_i = \underbrace{- \sum_{j \in \mathcal{N}_i} f_{ij}(x_i - x_j) - \sum_{j \in \mathcal{N}_i} g_{ij}(v_i - v_j)}_{\text{Relative feedback}} - \underbrace{f_0 x_i - g_0 v_i}_{\text{Absolute feedback}}$$

- Let each agent be subject to stochastic disturbance $w_i(t)$

Example 1: Large-scale vehicle platoons



- Objective: follow trajectory $\bar{x}_i(t) := \bar{v}t + \delta_i$
 - common cruising speed \bar{v}
 - tight constant spacing Δ , so that $\delta_i = \Delta i$
- Example control law: look-ahead, look-behind control

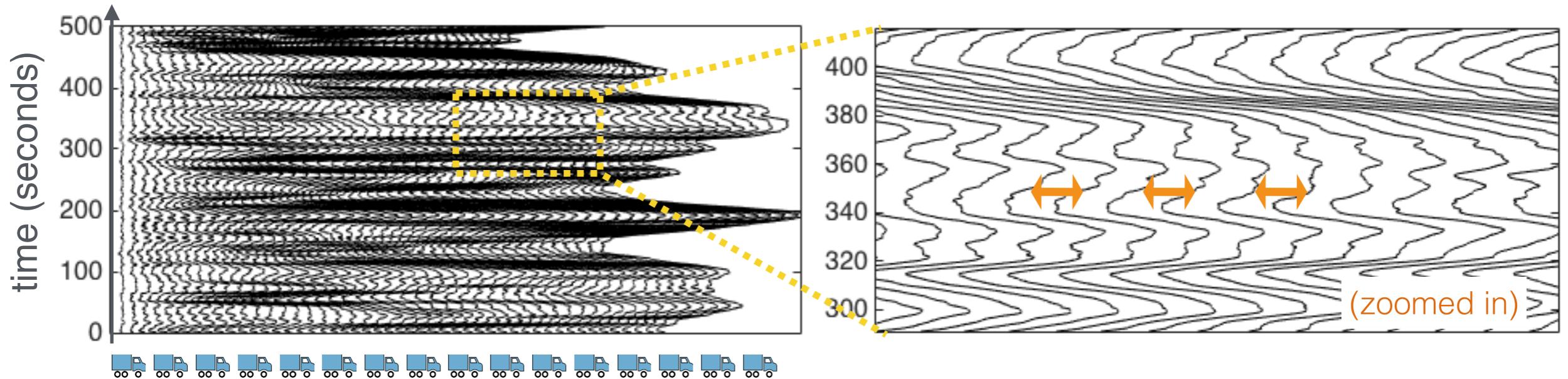
$$u_i = f_+(x_{i+1} - x_i) + f_-(x_{i-1} - x_i) + g_+(v_{i+1} - v_i) + g_-(v_{i-1} - v_i)$$

$(f_+, f_-, g_+, g_- \text{ constant gains})$

- With **disturbances**: objectives only achieved approximately
- What happens if the platoon grows?

Example 1 (contd.): Performance issues if control based on relative feedback

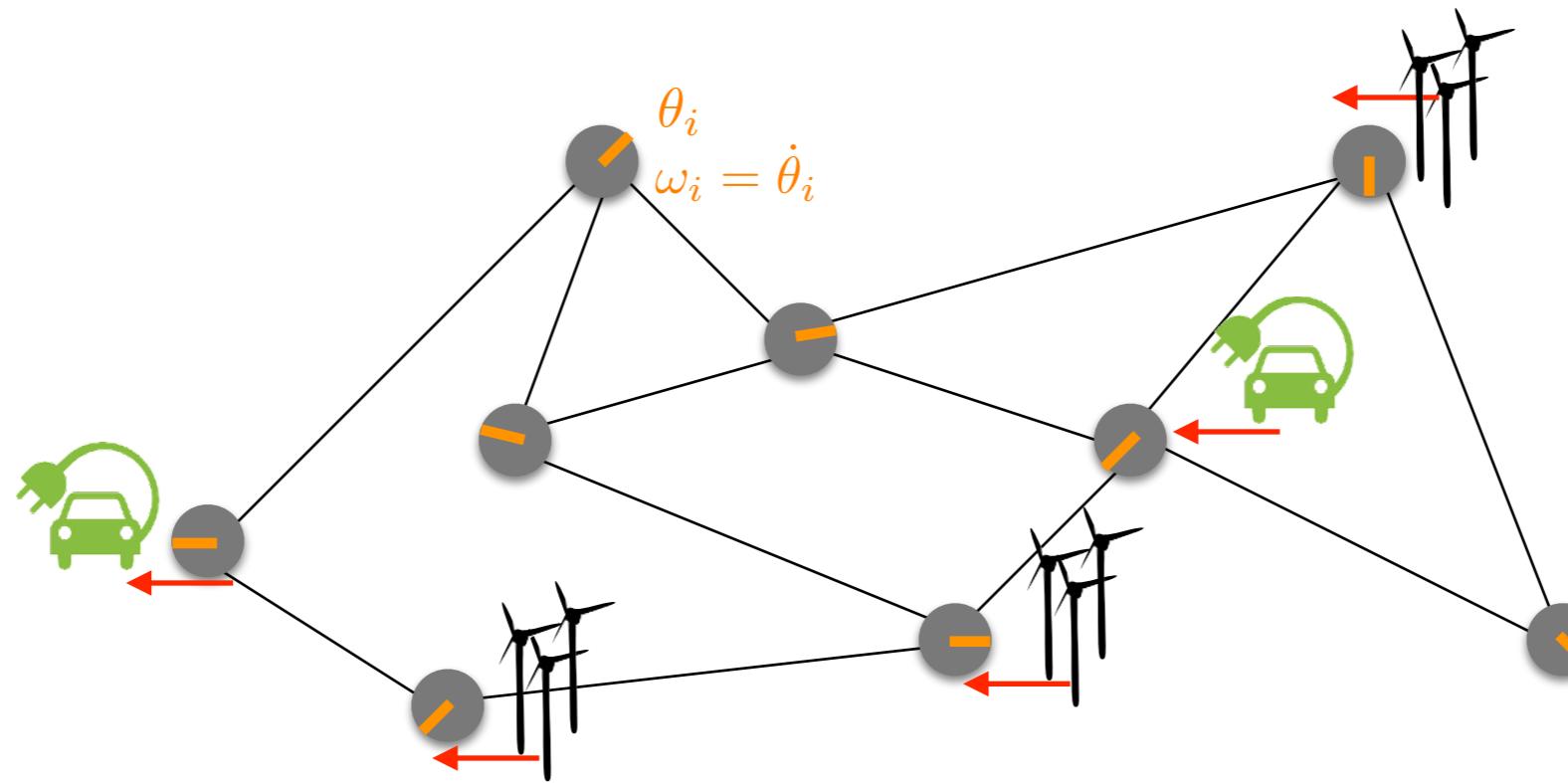
Time trajectories of 100 vehicles, relative to leader, seen from above



- Formation is stable
- Spacings \leftrightarrow are well-regulated (no collisions!)
- However - not a *rigid* formation, not *coherent*!
- Fundamental limitation to local, static feedback (Bamieh *et al.*, 2012)

Can dynamic feedback (PID control) help?

Example 2: Frequency control in power networks



- Objectives:
 - common, steady frequency $\bar{\omega}$ (60 Hz)
 - phase angles at equilibrium $(\theta_i - \theta_j) \sim P_i^*$
- Swing equation, or “droop control” (linearized)

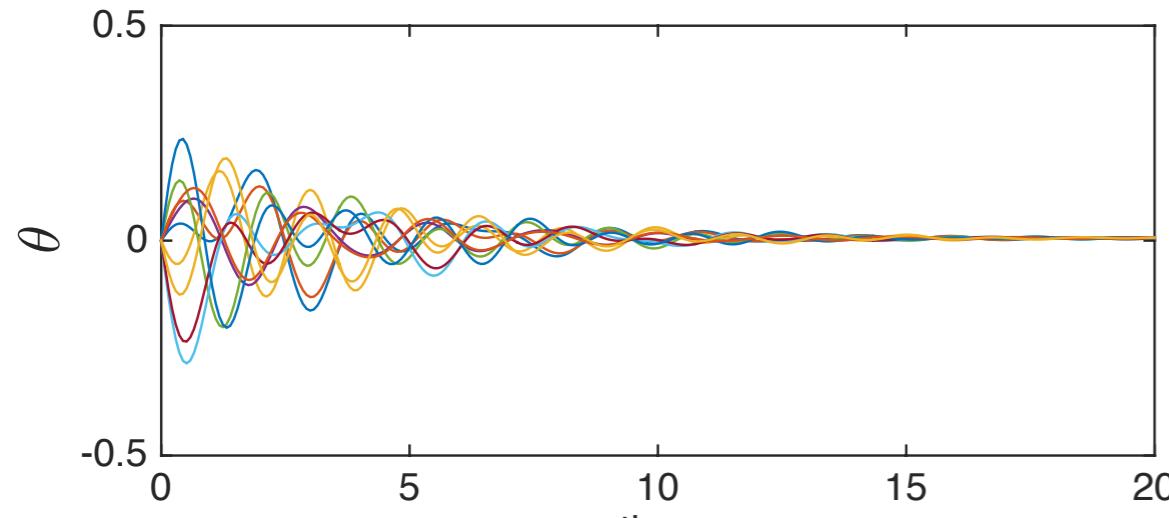
$$m_i \dot{\omega}_i = -d_i \omega_i - \sum_{j \in \mathcal{N}_i} b_{ij} (\theta_i - \theta_j) + \textcolor{red}{w}_i$$

(b_{ij} line susceptance, m_i inertia, d_i damping)

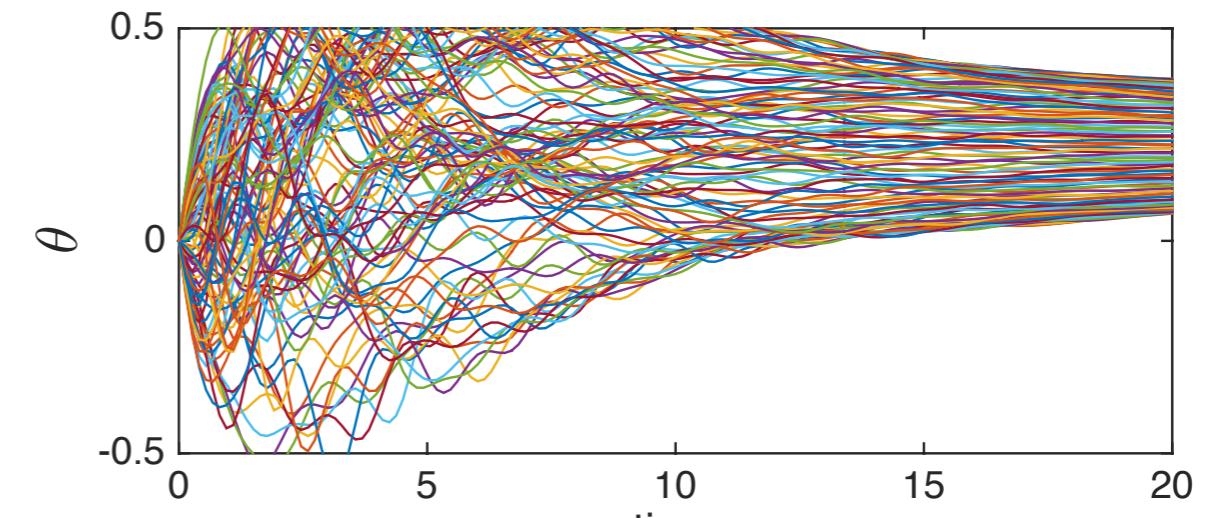
- Transition to distributed generation affects power system dynamics
 - More disturbances, (many) more generators

Example 2 (contd.): Issues with scalability of standard droop controller

- Simulation of droop control on 10 vs 100 node network (tree graph)

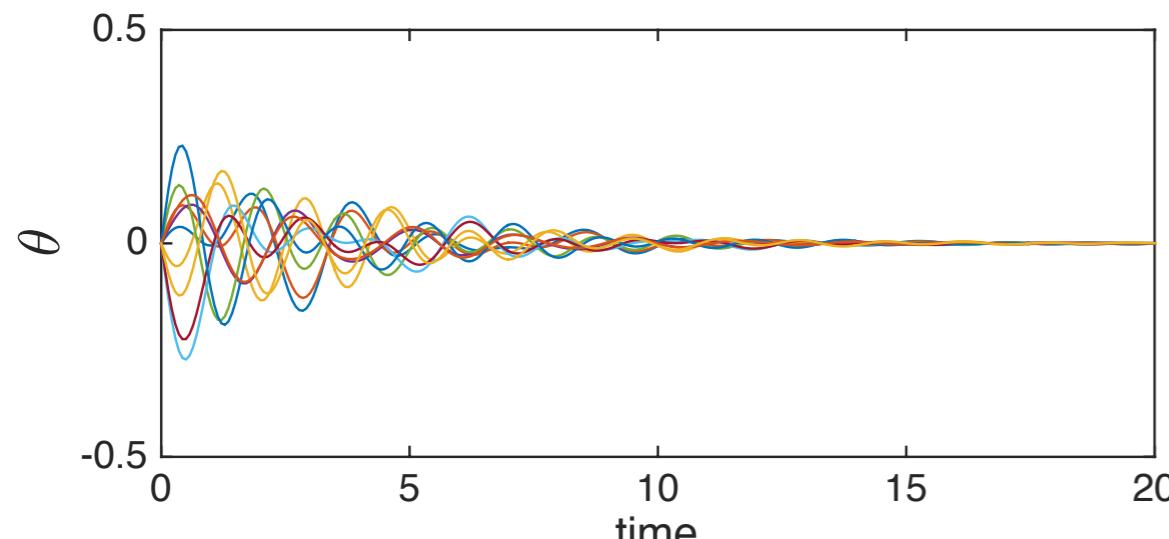


$N = 10$

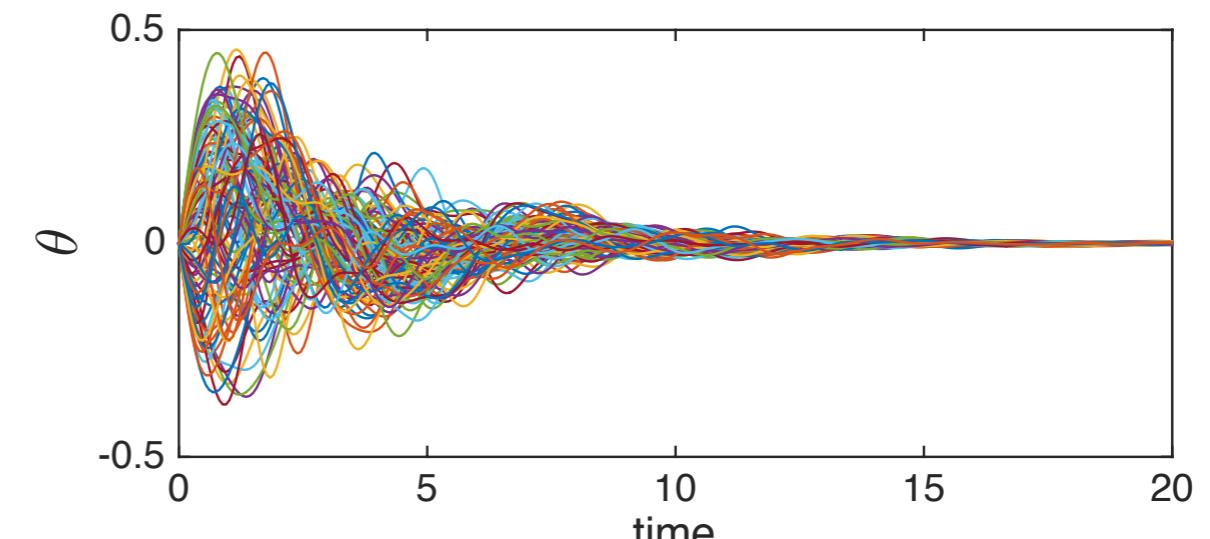


$N = 100$

- Today: Better scalability with distributed PI-control (dynamic feedback)



$N = 10$



$N = 100$

Problem setup: Performance is quantified through a measure of network coherence

- Consider each agent's deviation from the network average

$$y_i^{\text{dav}} = x_i - \frac{1}{N} \sum_{j=1}^N x_j$$

- Characterizes rigidity, coherence
- Performance is measured as *variance* of performance output, normalized by N

$$V_N = \frac{1}{N} \mathbb{E}\{y^T(t)y(t)\}$$

- Interested in the *scaling* of the output variance with network size

Summary: We characterize scalability of distributed control laws

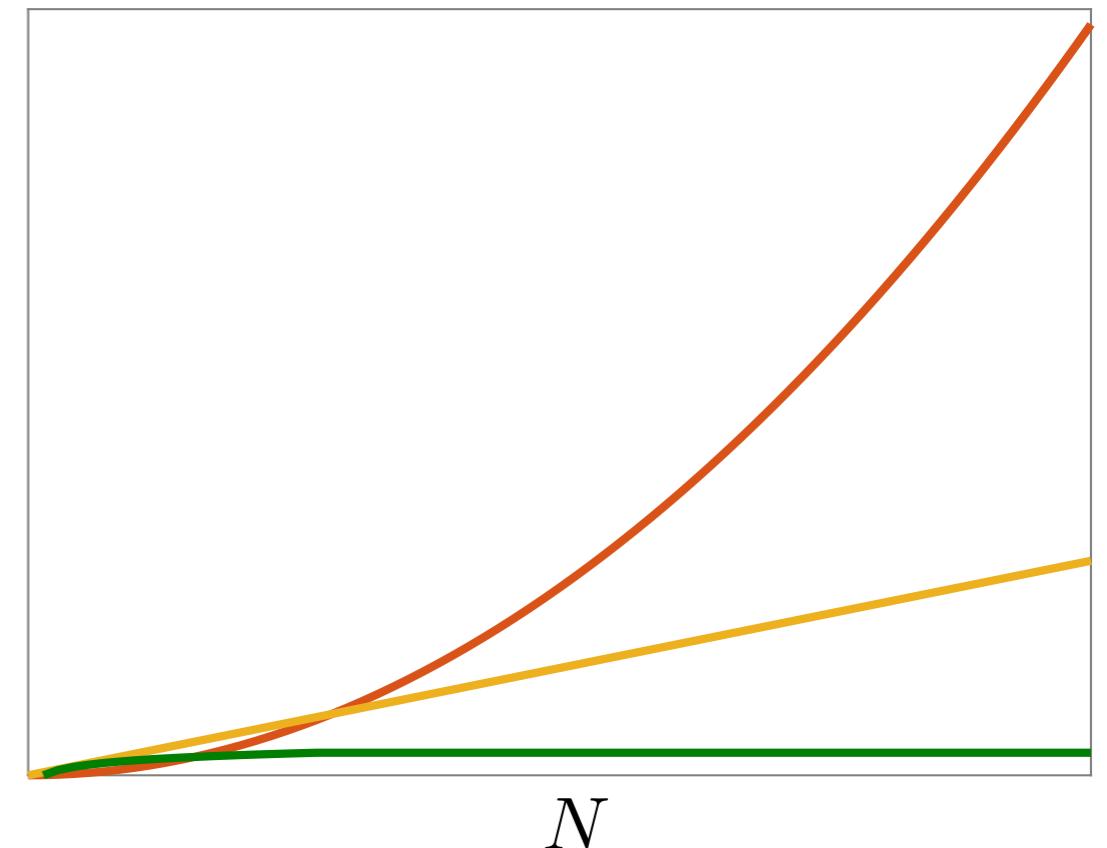
- Model: Second order consensus with performance output

$$\begin{bmatrix} \dot{x} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} 0 & I \\ -\mathcal{L}_F - f_0 I & -\mathcal{L}_G - g_0 I \end{bmatrix} \begin{bmatrix} x \\ v \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} w$$

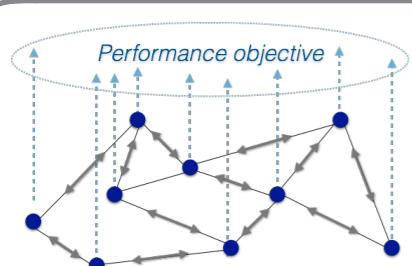
$$y = \begin{bmatrix} I - \frac{1}{N} \mathbf{1} \mathbf{1}^T & 0 \end{bmatrix} \begin{bmatrix} x \\ v \end{bmatrix}$$

($\mathcal{L}_F, \mathcal{L}_G$ weighted graph Laplacians, assume $\mathcal{L}_F = f\mathcal{L}, \mathcal{L}_G = g\mathcal{L}$ for some (weighted) \mathcal{L})

- Absolute feedback from x (v) if f_0 (g_0) nonzero
- Performance evaluation:
 - Consider (asymptotic) scaling of variance $V_N = \frac{1}{N} \mathbb{E}\{y^T(t)y(t)\}$
 - Control law scales well only if V_N bounded in N
- Objective: Compare static vs. dynamic feedback



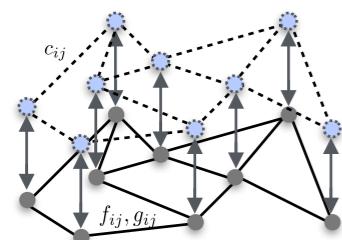
OUTLINE



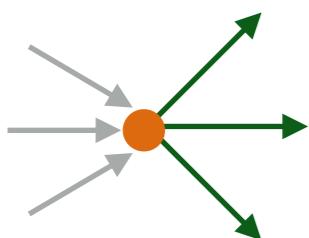
Introduction and problem formulation

\mathcal{H}^2

Evaluating input-output performance



Distributed PI and PD control



Conclusions and future work

Performance is evaluated through
input-output H_2 norms

Consider general linear system under white noise input

$$\begin{aligned} H : \quad \dot{x} &= \mathcal{A}x + \mathcal{B}\textcolor{red}{w} \\ &\quad \textcolor{green}{y} = \mathcal{C}x \end{aligned} \tag{1}$$

Recall:

Need to evaluate $V_N = \frac{1}{N} \mathbb{E}\{y^T y\}$, with $y = (I_N - \frac{1}{N} \mathbf{1}\mathbf{1}^T) x$

Lemma:

The squared H_2 norm of (1) from input $\textcolor{red}{w}$ to output $\textcolor{green}{y}$ gives

$$\|H\|_2^2 = \lim_{t \rightarrow \infty} \mathbb{E}\{y^T(t)y(t)\},$$

That is, the steady state output variance.

Evaluating system performance amounts to evaluating H_2 norms!

Eigenvalues near zero cause bad performance

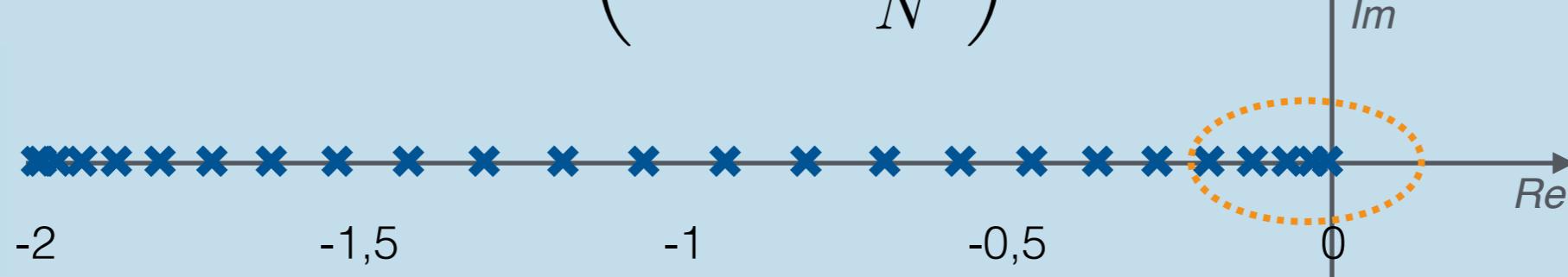
Theorem

$$V_N = \frac{1}{N} \|H\|_2^2 = \frac{1}{2N} \sum_{n=1}^{N-1} \frac{1}{(f_0 + f\lambda_n)(g_0 + g\lambda_n)}$$

Example (Ring graph, uniform weights):

- Eigenvalues

$$\lambda_n = 2 \left(1 - \cos \frac{2\pi n}{N} \right)$$



- As N grows: Arbitrarily many λ_n increasingly close to zero
- Sum blows up, unless $f_0, g_0 \neq 0$, i.e., absolute feedback

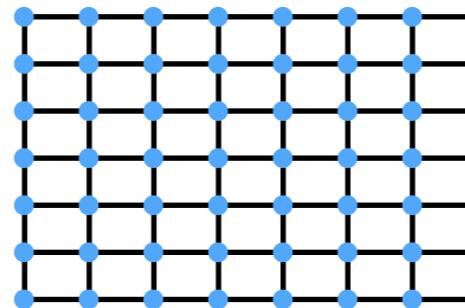
→ Precise scaling of V_N in N can be determined for regular graphs

P-control scales badly in sparse networks, unless absolute feedback available

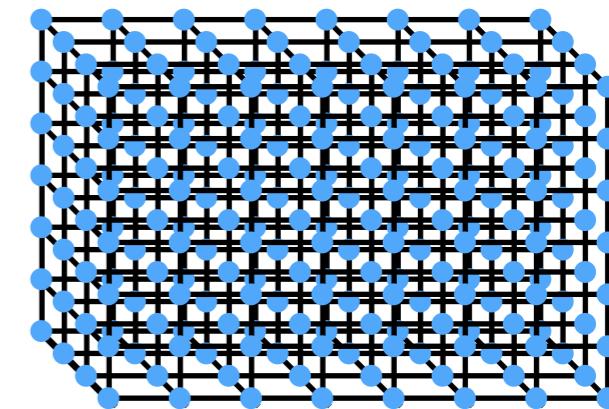
- Recall: $u_i = -\sum_{j \in \mathcal{N}_i} f_{ij}(x_i - x_j) - \sum_{j \in \mathcal{N}_i} g_{ij}(v_i - v_j) - f_0 x_i - g_0 v_i$
 - Relative feedback
 - Absolute feedback
- Let network be d -dimensional lattice

$d = 1$

$d = 2$



$d = 3$



...

Asymptotic performance scalings with static feedback (see e.g. Bamieh et al., 2012)
Up to a constant independent of gain parameter β and network size N

Relative x , relative v

$$V_N \sim \frac{1}{\beta^2} \begin{cases} N^3 & d = 1 \\ N & d = 2 \\ N^{1/3} & d = 3 \\ \log N & d = 4 \\ 1 & d \geq 5 \end{cases}$$

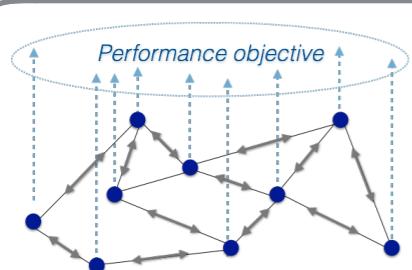
Relative x , absolute v ,
Absolute x , relative v

$$V_N \sim \frac{1}{\beta} \begin{cases} N & d = 1 \\ \log N & d = 2 \\ 1 & d \geq 3 \end{cases}$$

Absolute x , absolute v

$$V_N \sim \frac{1}{\beta}$$

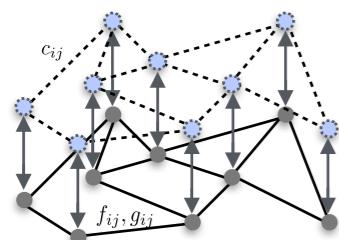
OUTLINE



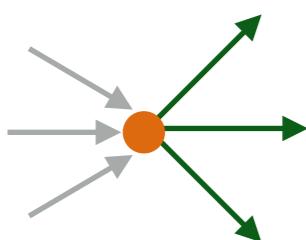
Introduction and problem formulation

\mathcal{H}^2

Evaluating input-output performance



Distributed PI and PD control



Conclusions and future work

Various strategies proposed to deal with performance limitations

- Assign select leaders with absolute measurement (1st order consensus)
 - S. Patterson et al. “Leader selection for optimal network coherence,” CDC 2010
 - F. Lin et al. “Algorithms for leader selection in stochastically forced consensus networks,” TAC 2014
 - M. Pirani et al. “Coherence and convergence rate in networked dynamical systems,” CDC 2015
- Optimize gains, change symmetries
 - T. Summers et al. “Topology design for optimal network coherence,” ECC 2015
 - F. Lin et al. “Optimal control of vehicular formations with nearest neighbor interactions, TAC 2012
- *Here*: use distributed PID-control
 - M. Andreasson et al. “Distributed control of networked dynamical systems: Static feedback, integral action and consensus,” TAC 2014
 - D. Lombana and M. di Bernardo, “Distributed PID control for consensus of homogeneous and heterogeneous networks, TCNS 2016

Idea: use derivative or integral action to substitute unavailable measurement

Derivative action

Absolute x -measurement

- Derivative of x -measurement corresponds to v

$$\frac{dx_i}{dt} = v_i(t)$$

- Ideally:* same performance as with absolute feedback in x, v
- Ideal derivative action not possible to implement + sensitive to noise

Integral action

Absolute v -measurement

- Integral of v -measurement corresponds to x

$$\int_0^t v_i(\tau) d\tau = x_i(t) - x_i(0)$$

- Ideally:* same performance as with absolute feedback in x, v
- Decentralized integration does not give robustly stable system

Modifications of the control laws required to enable implementation

Filtered distributed PD-control (F-DPD)

- Control law: **(Laplace domain!)**

$$U_i = - \sum_{j \in \mathcal{N}_i} f_{ij}(X_i - X_j) - \sum_{j \in \mathcal{N}_i} g_{ij}(V_i - V_j) - f_0 X_i - \frac{s}{\tau s + 1} K_D X_i$$

- Low-pass filter prevents too large variations in control signal

Theorem

$$V_N^{\text{F-DPD}} = \frac{1}{2N} \sum_{n=2}^N \frac{1}{(f_0 + f\lambda_n) \left(g\lambda_n + \frac{K_D(\tau g\lambda_n + 1)}{\tau^2(f_0 + f\lambda_n) + \tau g\lambda_n + 1} \right)}$$

For any positive K_D and τ , $V_N^{\text{F-DPD}}$ is *uniformly bounded* in N for any network:

$$0 < V_N^{\text{F-DPD}} < \frac{\tau^2 f_0 + 1}{2f_0 K_D}$$

- Higher order filters give same result
- Theoretical performance best if filter constant $\tau = 0$

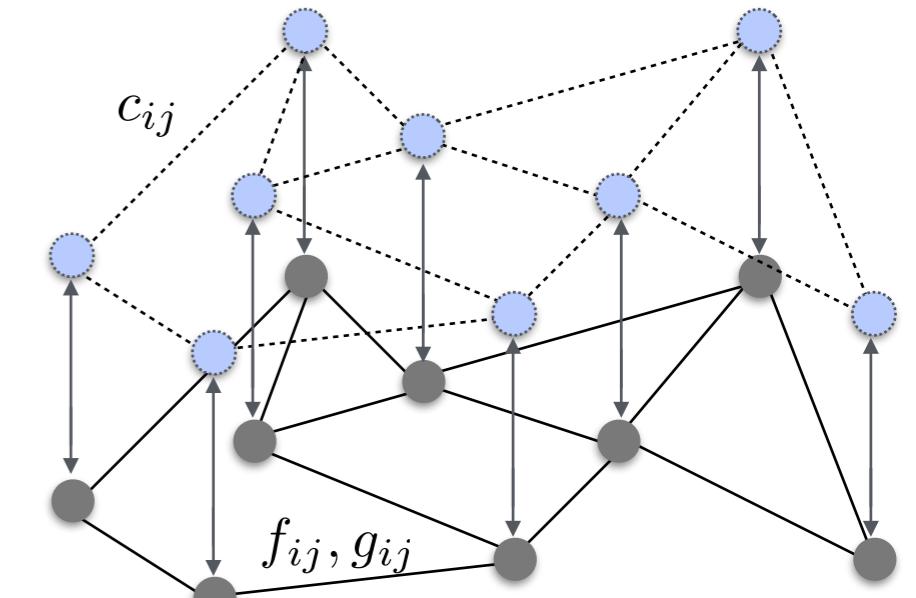
Distributed averaging PI-control (DAPI) 1(2)

- Control law:

$$u_i = - \sum_{j \in \mathcal{N}_i} f_{ij}(x_i - x_j) - \sum_{j \in \mathcal{N}_i} g_{ij}(v_i - v_j) - g_0 v_i - K_I z_i$$

$$\dot{z}_i = -v_i - \sum_{j \in \mathcal{N}_i} c_{ij}(z_i - z_j)$$

- Distributed averaging filter prevents de-stabilizing drift by aligning integral state
- Proposed in power system context (secondary frequency control)



Theorem

Assume uniform ratios c_{ij}/f_{ij} , so $\mathcal{L}_c = c\mathcal{L}$, then

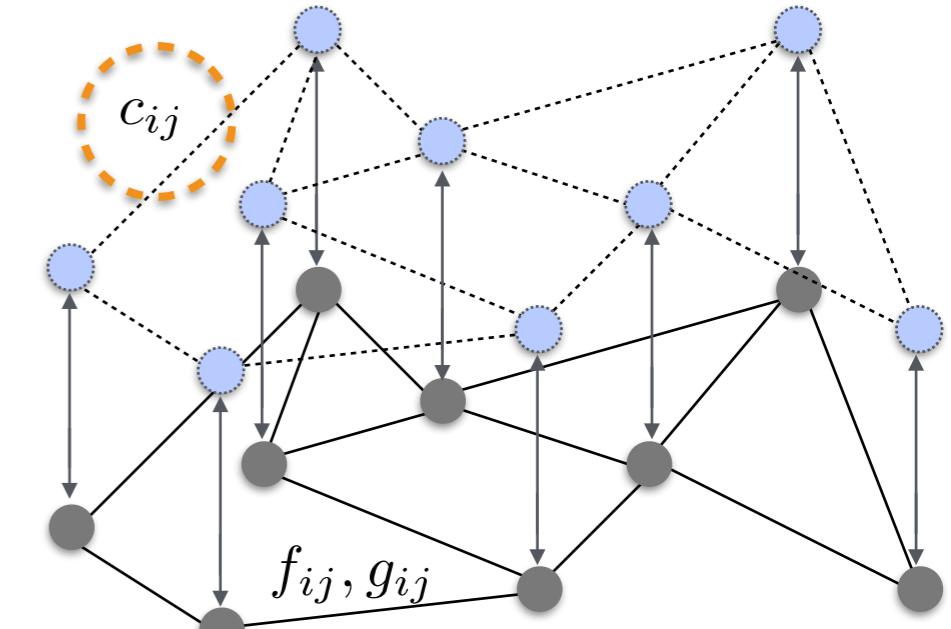
$$V_N^{\text{DAPI}} = \frac{1}{2N} \sum_{n=2}^N \frac{1}{fg\lambda_n^2 + \frac{K_I f(g_0 + \lambda_n(c+g)) + g_0 f \lambda_n(c^2 \lambda_n + f + cg_0))}{f + cg_0 + c \lambda_n(c+g)}}.$$

For any positive and finite K_I and c , V_N^{DAPI} is uniformly bounded in N :

$$0 < V_N^{\text{DAPI}} < \frac{f + cg_0}{2K_I fg_0}.$$

Distributed averaging PI-control (DAPI) 2(2)

- Design of distributed averaging filter affects performance
 - $c \rightarrow 0 \Rightarrow z_i \approx \int_0^t v_i(\tau) d\tau = x_i$
 - $c \rightarrow \infty \Rightarrow$ same perf. as w/o PI control
 - In some cases, optimal $c^* > 0$

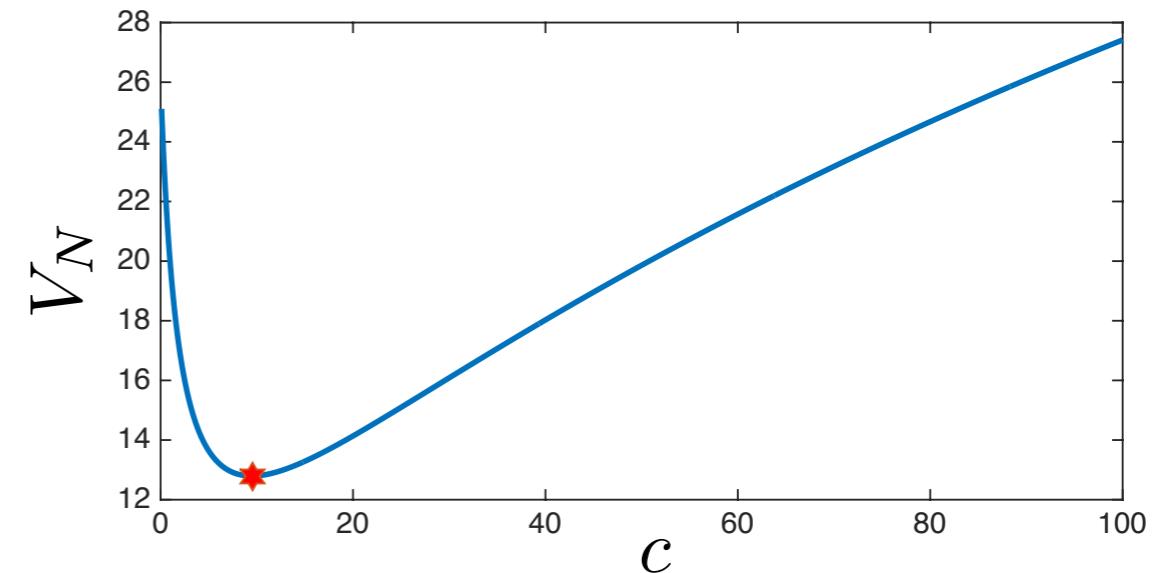


Corollary (optimal distr. averaging)

The optimal gain $c^* > 0$ if

$$f > \frac{1}{\lambda_n} (g\lambda_n + g_0)^2,$$

for all $n = 2, \dots, N$.



- For insights to optimal topology, see X. Wu et al. (ACC, 2016), D. Deka et al. (ACC, 2017)

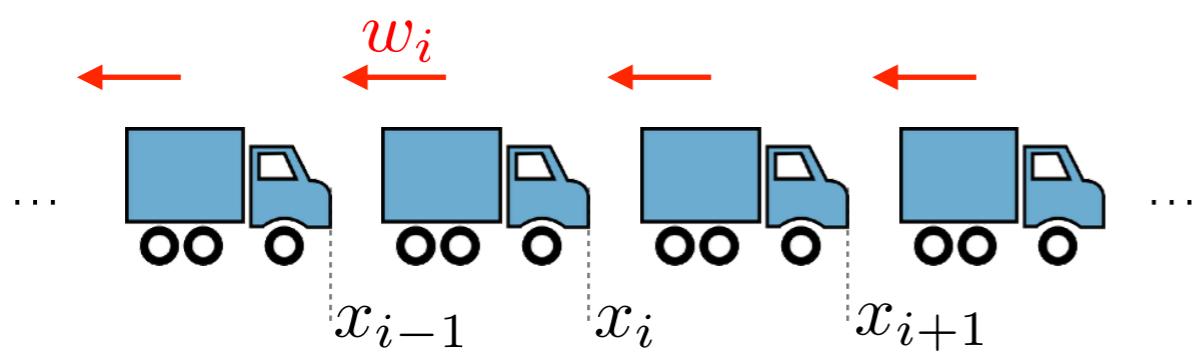
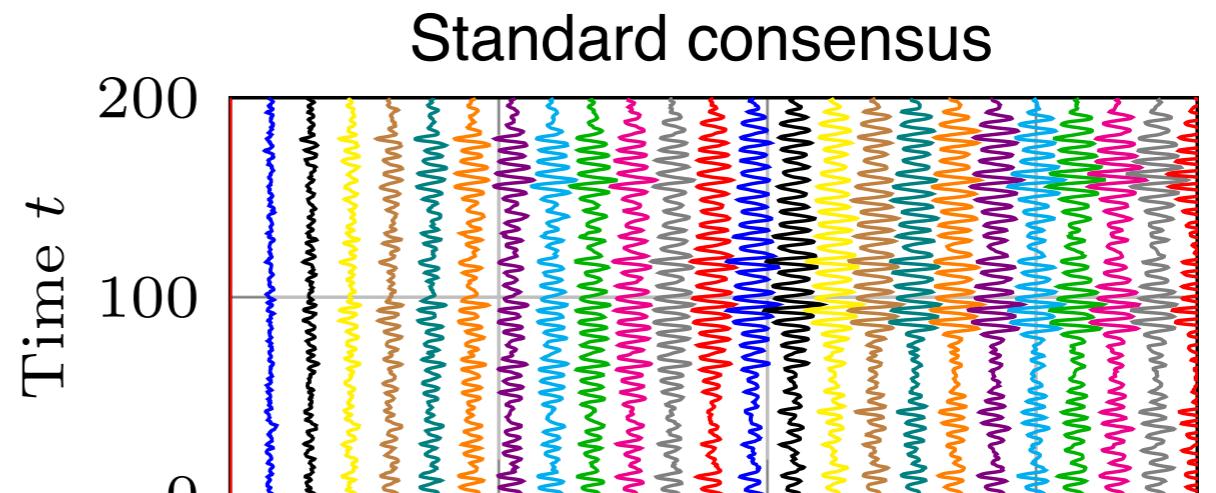
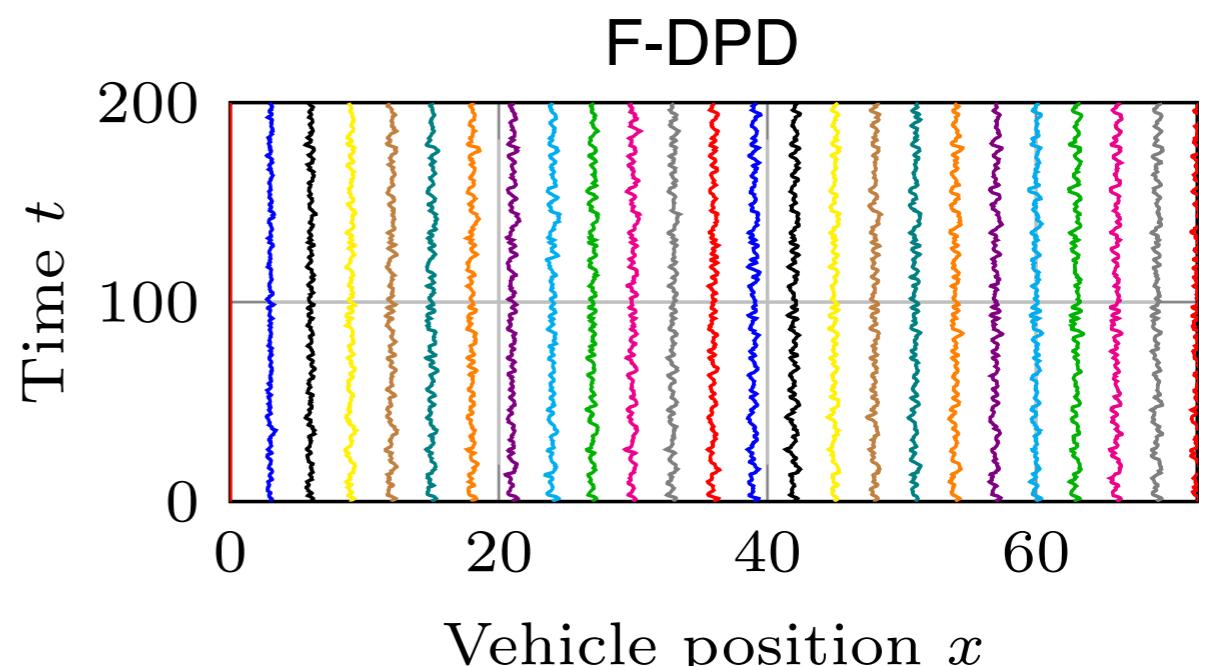
Summary: PI and PD control can relax performance limitations

	Relative x , relative v	Relative x , absolute v , Absolute x , relative v	Absolute x , absolute v
Standard consensus	$V_N \sim \frac{1}{\beta^2} \begin{cases} N^3 & d = 1 \\ N & d = 2 \\ N^{1/3} & d = 3 \\ \log N & d = 4 \\ 1 & d \geq 5 \end{cases}$	$V_N \sim \frac{1}{\beta} \begin{cases} N & d = 1 \\ \log N & d = 2 \\ 1 & d \geq 3 \end{cases}$	$V_N \sim \frac{1}{\beta}$
F-DPD, DAPI	N/A	$V_N \sim \frac{1}{\beta}$	$V_N \sim \frac{1}{\beta}$

(β parameter reflecting control effort, d lattice dimension)

Example 1: F-DPD in vehicular formation

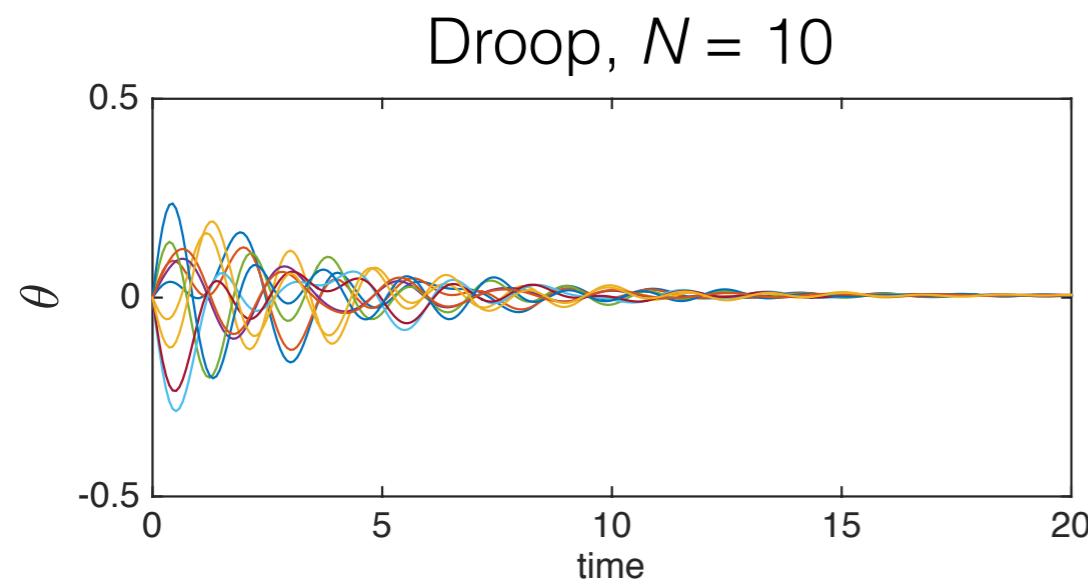
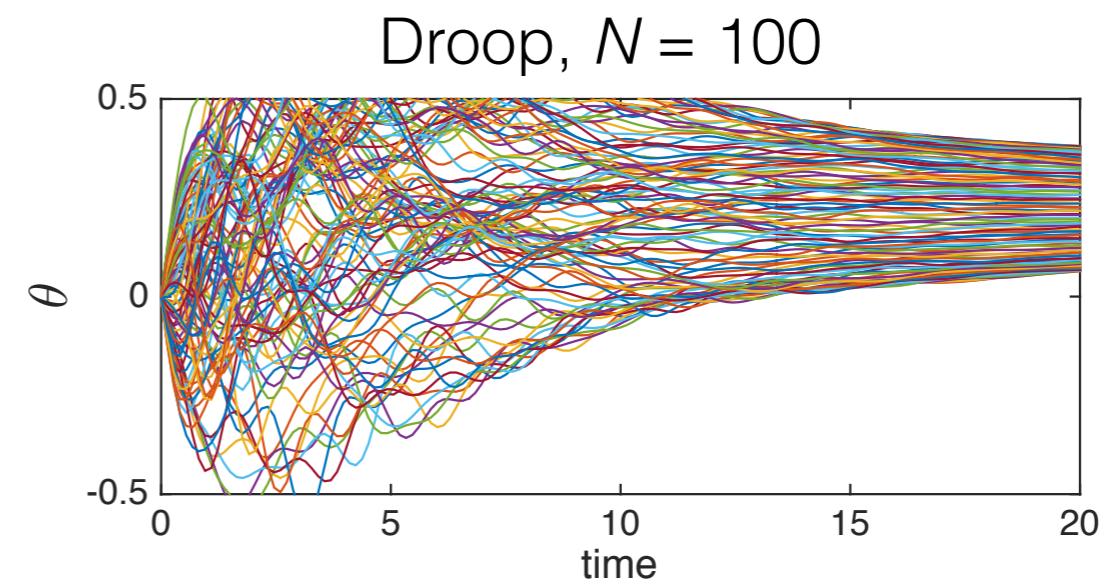
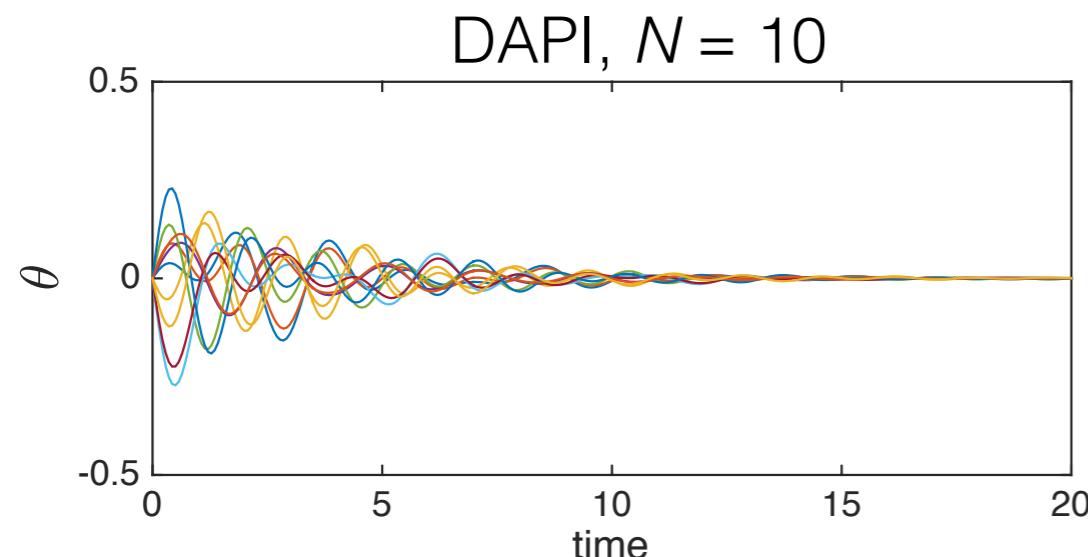
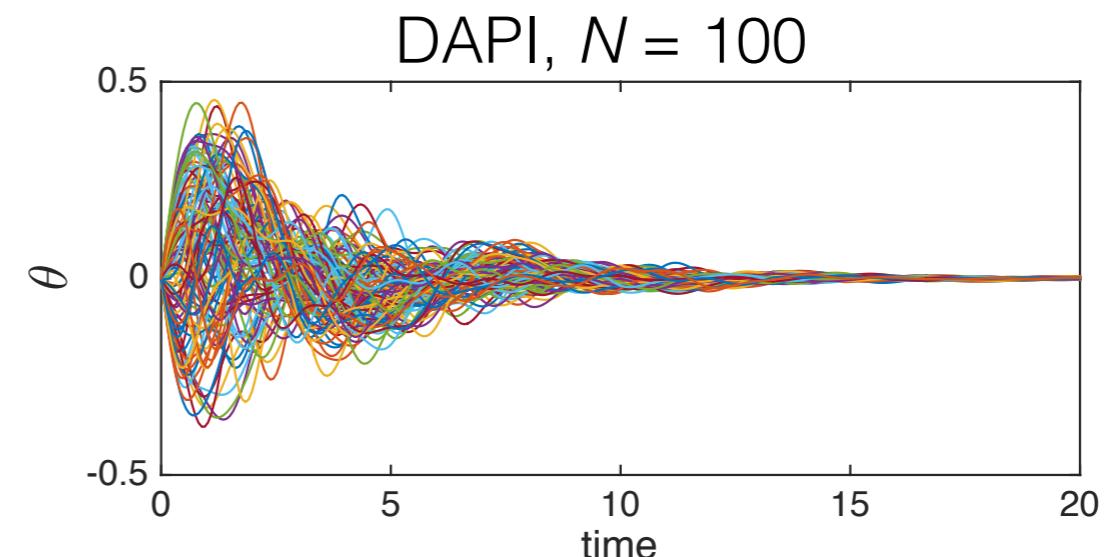
- Assume no speedometer, but position is known
- Compare standard protocol to F-DPD



Subset of 100 vehicle platoon, simulated under white noise disturbance

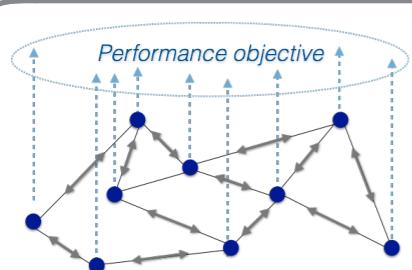
Example 2: DAPI in frequency control

- In power networks, frequency ω_i can be measured, but measurement of phase θ_i requires phasor measurement unit (PMU)
- DAPI improves performance and scalability, + eliminates stationary error



Simulation of synchronization transient in radial network with $N=10$ and $N=100$ nodes

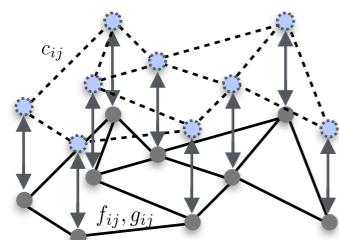
OUTLINE



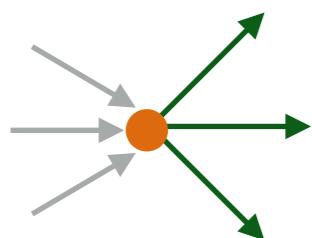
Introduction and problem formulation

\mathcal{H}^2

Evaluating input-output performance



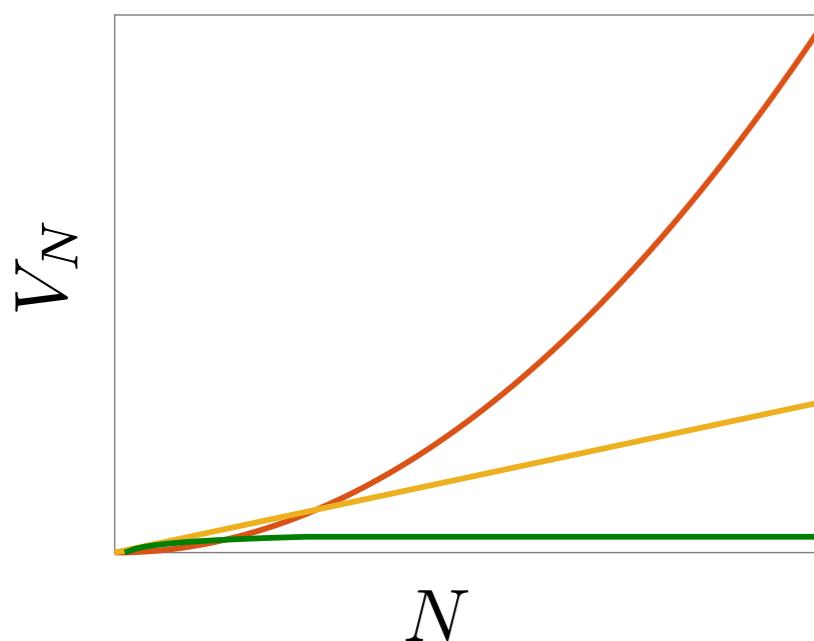
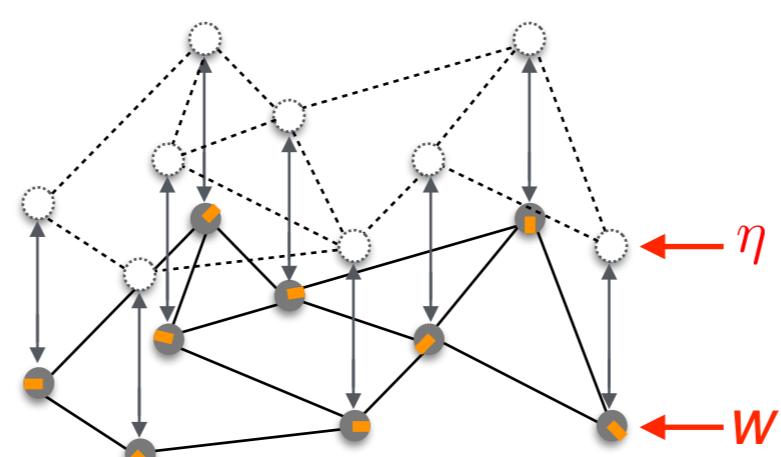
Distributed PI and PD control



Conclusions and future work

Ongoing and future work

- Can scalings at all be improved without absolute measurements?
- Issues with measurement noise and bias
- Further applications in power networks:
 - Scalability of frequency control
 - Use of PMUs



Thank you!

tegling@kth.se

Funding support from:

SWEDISH FOUNDATION *for*
STRATEGIC RESEARCH