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1 INTRODUCTION 2 PROBLEM SETUP

Poor dynamic behaviors are often observed in large-scale Network model Consensus dynamics Key assumptions
network systems. In consensus networks, one example is
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Vehicle platooning is one application where questions of scalability are relevant. Members of a graph family n = 2 gives vehicular formation dynamics # = —agLx — a1 L.
Here, a communications infrastructure may add connectivity to improve performance.
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3 CONNECTIVITY SCALING AND EXPANDERS

The algebraic connectivity scales badly in N if the graph family has what we term a ‘bottleneck’. Here, we characterize such families algebraically.
Graph families without bottlenecks are termed expander families. Their algebraic connectivity scales well.
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4 FRAGILITY TO NETWORK GROUNDING Scaling of algebraic connectivity and grounded Laplacian eigenvalue) in

random graphs vs. lattice graphs. Nodal degrees are all 4 in both graphs.
Note the difference in scaling between \o and A1 of the random graphs.

Above, we saw that a good scaling of algebraic connectivity A5 is achieved by expander families. However, in grounded networks,
the smallest eigenvalue of the grounded Laplacian, A\ inevitably decreases towards zero as the network grows.

Lemma 2: Under Assumptions 1 and 2, the smallest eigenvalue Implications !

of the grounded Laplacian satisfies e Consensus is fragile to grounding — performance degrades

M (Gn) < 4 severely if a node in an expander network is grounded.
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