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INTRODUCTION            1
Poor	dynamic	behaviors	are	often	observed	in	large-scale	
network	systems.	In	consensus	networks,	one	example	is	
scale	fragility,	where	stability	is	lost	for	large	networks[1,2].			
Others	are	issues	related	to	controllability	and	performance.		

A	network	system’s	behavior	should	ideally	be	scalable	—	  
its	performance	should	be	uniform	with	respect	to	network	
size.	At	the	same	time,	communications	overheads	should	
remain	modest,	imposing	a	uniform	bound	on	nodal	degrees.	

For	consensus	networks,	these	objectives	can	be	met	by	
expander	families.	We	show,	however,	that	such	networks	are	
very	fragile	to	grounding.	

PROBLEM SETUP                        2

CONNECTIVITY SCALING AND EXPANDERS3

KEY TAKEAWAYS5

Graphs with decreasing algebraic connectivity Expander families

The	algebraic	connectivity	scales	badly	in	N	if	the	graph	family	has	what	we	term	a	‘bottleneck’.		Here,	we	characterize	such	families	algebraically.	 
Graph	families	without	bottlenecks	are	termed	expander	families.	Their	algebraic	connectivity	scales	well.	

• Partition	a	graph’s	vertices	into	three	sets,	
so	that	X2	is	the	boundary	set	of	X1	and	X3.	

• The	Laplacian	becomes

• Each	node	is	nth	order	integrator	

• Linear	nth	order	consensus:	

• Closed-loop	dynamics:	

n	=	1	gives	information	consensus																			,	  
n	=	2	gives	vehicular	formation	dynamics																																								.	Vehicle	platooning	is	one	application	where	questions	of	scalability	are	relevant.	 

Here,	a	communications	infrastructure	may	add	connectivity	to	improve	performance.		

• Weighted,	undirected,	connected	graph																								
.																						with																		nodes	

• We	consider	families	of	graphs 
in	which	N	is	increasing	

• Graph	Laplacian	of						is	denoted	L,	  
with	eigenvalues										

• The	algebraic	connectivity	of						is						,	
or

Members	of	a	graph	family

[ Leader-follower	consensus	is	obtained	by	grounding	one	node;	Uix																and	let																																			.		
Then,																																																																																					.						is	the	grounded	Laplacian	with	smallest	eigenvalue				 ]

FRAGILITY TO NETWORK GROUNDING4

Graph	partitioning	for	Lemma	1.	The	set	X2	is	a	
‘bottleneck’	if	it	stays	small	relative	to	X1	and	X3.

Network model Consensus dynamics Key assumptions
1. Bounded	neighborhoods	

2. Fixed*	and	Uinite	weights	

3. Fixed*	and	Uinite	gains	

					*independent	of	N	

Lemma	1:	If	every	graph	in	the	family												can	
be	partitioned	as	above,	so	that																									and									
.																							as																	,	then  

Proof:	Relies	on	Rayleigh-Ritz	theorem.

• A	graph’s	Cheeger	constant	is	deUined	as	

 

De-inition:	The	graph	family												is	an	expander	family	
if																			is	bounded	away	from	zero	as	

Result	2:	The	graph	family												is	an	expander	family	
if	and	only	if																					is	bounded	away	from	zero	  
as																			[6]

• Random	graphs	are	almost	surely	expander	
families.	This	can	be	exploited	to	construct	
consensus	networks	with	good	scalability[7].	

Boundary	set	of				,	

Example	of	randomly	generated	
graph	with	N	=	60.

Scaling	of	algebraic	connectivity	(and	grounded	Laplacian	eigenvalue)	in	
random	graphs	vs.	lattice	graphs.	Nodal	degrees	are	all	4	in	both	graphs.  
Note	the	difference	in	scaling	between							and							of	the	random	graphs.

Lemma	2:	Under	Assumptions	1	and	2,	the	smallest	eigenvalue	
of	the	grounded	Laplacian	satisUies	

Proof:	Relies	on	Rayleigh-Ritz	theorem.

• Clearly,		
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Fragility	in	n	=	3	consensus	network.	The	same	
disturbance	is	applied	at	t	=	1	s	and	t	=	31	s.		

Example:	The	Uigure	shows	
a	simulation	of	3rd-order	
consensus	over	a	60-node	
random	graph.	Node	1	is	
grounded	at	t	=	30	s.	This	
destabilizes	the	network,	
since		

Simulation	of	formation	control	in,	respectively,	20	and	100	node	networks	with	
and	without	lead	vehicle.	Scalability	is	lost	if	a	lead	vehicle	is	used.	

THE ROLE OF 
ALGEBRAIC 
CONNECTIVITY

Convergence rate Sensitivity Stability
Assume	disturbance	input  
and	let																						.	Then,	

if	n	=	1	or	n	=	2	[4,5].

If	n	>	2,	a	necessary	stability	condition	is	
																																																							.[2]	

If																							,	the	system	is	unstable	for	
all	N	>	Ncrit.

R
EC

A
P The	rate	of	convergence	to	consensus	

is	inversely	related	to						.	  
In	1st	order	consensus	(n	=	1):	

																																																																	.	[3]							

In	leader-follower	
consensus,	these	
properties	instead	
depend	on						.							
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Implications
• Consensus	is	fragile	to	grounding	—	performance	degrades	
severely	if	a	node	in	an	expander	network	is	grounded.	 
In	high-order	consensus,	the	system	may	destabilize.	

• Leader-follower	consensus	(unlike	leaderless	consensus)	
always	lacks	scalability	in	bounded-degree	networks.	

!

• It	is	desirable	that	the	performance	of	a	network	
system	be	scalable	with	respect	to	network	size,	
though	nodal	degrees	remain	bounded.	

• A	high	algebraic	connectivity	is	crucial	for	the	
performance	of	consensus	networks.	It	scales	
well	only	in	expander	families.		

• Grounding	the	network	creates	leader-follower	
consensus,	which	is	never	scalable	in	bounded-
degree	networks.		

• The	results	imply	that	large	consensus	networks	
can	be	highly	fragile	to	grounding.
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Above,	we	saw	that	a	good	scaling	of	algebraic	connectivity						is	achieved	by	expander	families.	However,	in	grounded	networks,	  
the	smallest	eigenvalue	of	the	grounded	Laplacian,							inevitably	decreases	towards	zero	as	the	network	grows.	

Example:	A	vehicular	formation	control	problem	is	modeled	by	
the	consensus	dynamics	with	n	=	2.	The	formation’s	scalability	
can	differ	vastly	depending	on	whether	it	has	a	lead	vehicle.	

Here,	we	simulate	how	small	and	large	formations	over	random	
graph	networks	respond	to	a	deceleration	in	one	vehicle.	


